Skip to main content
Top
Published in: Environmental Earth Sciences 4/2017

01-02-2017 | Original Article

Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India

Authors: Nilotpal Das, Kali P. Sarma, Arbind K. Patel, Jyoti P. Deka, Aparna Das, Abhay Kumar, Patrick J. Shea, Manish Kumar

Published in: Environmental Earth Sciences | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Arsenic (As) and fluoride (F) in groundwater are increasing global water quality and public health concerns. The present study provides a deeper understanding of the impact of seasonal change on the co-occurrence of As and F, as both contaminants vary with climatic patterns. Groundwater samples were collected in pre- and post-monsoon seasons (n = 40 in each season) from the Brahmaputra flood plains (BFP) in northeast India to study the effect of season on As and F levels. Weathering is a key hydrogeochemical process in the BFP and both silicate and carbonate weathering are enhanced in the post-monsoon season. The increase in carbonate weathering is linked to an elevation in pH during the post-monsoon season. A Piper diagram revealed that bicarbonate-type water, with Na+, K+, Ca2+, and Mg2+ cations, is common in both seasons. Correlation between Cl and NO3 (r = 0.74, p = 0.01) in the post-monsoon indicates mobilization of anthropogenic deposits during the rainy season. As was within the 10 µg L−1 WHO limit for drinking water and F was under the 1.5 mg L−1 limit. A negative correlation between oxidation reduction potential and groundwater As in both seasons (r = −0.26 and −0.49, respectively, for pre-monsoon and post-monsoon, p = 0.05) indicates enhanced As levels due to prevailing reducing conditions. Reductive hydrolysis of Fe (hydr)oxides appears to be the predominant process of As release, consistent with a positive correlation between As and Fe in both seasons (r = 0.75 and 0.73 for pre- and post-monsoon seasons, respectively, at p = 0.01). Principal component analysis and hierarchical cluster analysis revealed grouping of Fe and As in both seasons. F and sulfate were also clustered during the pre-monsoon season, which could be due to their similar interactions with Fe (hydr)oxides. Higher As levels in the post-monsoon appears driven by the influx of water into the aquifer, which drives out oxygen and creates a more reducing condition suitable for reductive dissolution of Fe (hydr)oxides. An increase in pH promotes desorption of As oxyanions AsO4 3− (arsenate) and AsO3 3− (arsenite) from Fe (hydr)oxide surfaces. Fluoride appears mainly released from F-bearing minerals, but Fe (hydr)oxides can be a secondary source of F, as suggested by the positive correlation between As and F in the pre-monsoon season.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200CrossRef Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200CrossRef
go back to reference APHA (2005) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington APHA (2005) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington
go back to reference Arveti N, Sarma MR, Aitkenhead-Peterson JA, Sunil K (2011) Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. Environ Monit Assess 172:427–443CrossRef Arveti N, Sarma MR, Aitkenhead-Peterson JA, Sunil K (2011) Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. Environ Monit Assess 172:427–443CrossRef
go back to reference Balasundaram MS (1977) Contribution to geomorphology and geohydrology of the Brahmaputra valley. Geol Surv India Balasundaram MS (1977) Contribution to geomorphology and geohydrology of the Brahmaputra valley. Geol Surv India
go back to reference Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Sarkar B (2002) Arsenic in the environment: a global perspective. Handbook of heavy metals in the environment. Marcell Dekker Inc., New York, pp 147–215 Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Sarkar B (2002) Arsenic in the environment: a global perspective. Handbook of heavy metals in the environment. Marcell Dekker Inc., New York, pp 147–215
go back to reference Bhattacharya R, Jana J, Nath B, Sahu SJ, Chatterjee D, Jacks G (2003) Groundwater As mobilization in the Bengal Delta Plain, the use of ferralite as a possible remedial measure a case study. Appl Geochem 18:1435–1451CrossRef Bhattacharya R, Jana J, Nath B, Sahu SJ, Chatterjee D, Jacks G (2003) Groundwater As mobilization in the Bengal Delta Plain, the use of ferralite as a possible remedial measure a case study. Appl Geochem 18:1435–1451CrossRef
go back to reference Bhuyan B, Bhuyan D (2011) Groundwater arsenic contamination status in Dhakuakhana sub-division of Lakhimpur district, Assam, India. ActachimicapharmaIndica 1:14–19 Bhuyan B, Bhuyan D (2011) Groundwater arsenic contamination status in Dhakuakhana sub-division of Lakhimpur district, Assam, India. ActachimicapharmaIndica 1:14–19
go back to reference Brindha K, Rajesh R, Murugan R, Elango L (2011) Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, India. Environ Monit Assess 172:481–492CrossRef Brindha K, Rajesh R, Murugan R, Elango L (2011) Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, India. Environ Monit Assess 172:481–492CrossRef
go back to reference Brunt R, Vasak L, Griffioen J (2004) Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. IGRAC Brunt R, Vasak L, Griffioen J (2004) Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. IGRAC
go back to reference Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean plain, Argentina: case study from Robles county, Santiago del Estero province. Appl Geochem 19:231–243CrossRef Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean plain, Argentina: case study from Robles county, Santiago del Estero province. Appl Geochem 19:231–243CrossRef
go back to reference Chakraborti D, Chanda CR, Samanta G, Chowdhury UK, Mukherjee SC, Pal AB, Sharma B, Mahanta KJ, Ahmed HA, Sing B (2000) Fluorosis in Assam, India. Curr Sci 78:1421–1423 Chakraborti D, Chanda CR, Samanta G, Chowdhury UK, Mukherjee SC, Pal AB, Sharma B, Mahanta KJ, Ahmed HA, Sing B (2000) Fluorosis in Assam, India. Curr Sci 78:1421–1423
go back to reference Chen K, Jiao JJ, Huang J, Huang R (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ Pollut 147:771–780CrossRef Chen K, Jiao JJ, Huang J, Huang R (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ Pollut 147:771–780CrossRef
go back to reference Critto A, Carlon C, Marcomini A (2003) Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging. Environ Pollut 122:235–244CrossRef Critto A, Carlon C, Marcomini A (2003) Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging. Environ Pollut 122:235–244CrossRef
go back to reference Das BK, Kaur P (2001) Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Environ Geol 40:908–917CrossRef Das BK, Kaur P (2001) Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Environ Geol 40:908–917CrossRef
go back to reference Das B, Talukdar J, Sarma S, Gohain B, Dutta RK, Das HB, Das SC (2003) Fluoride and other inorganic constituents in groundwater of Guwahati, Assam, India. Curr Sci Bangalore 85:657–660 Das B, Talukdar J, Sarma S, Gohain B, Dutta RK, Das HB, Das SC (2003) Fluoride and other inorganic constituents in groundwater of Guwahati, Assam, India. Curr Sci Bangalore 85:657–660
go back to reference Evans P (1964) The tectonic framework of Assam. J GeolSoc India 5:80–96 Evans P (1964) The tectonic framework of Assam. J GeolSoc India 5:80–96
go back to reference Fisher RS, Mullican WF III (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5:4–16CrossRef Fisher RS, Mullican WF III (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5:4–16CrossRef
go back to reference Ghosh NC, Singh RD (2009) Groundwater Arsenic Contamination in India: vulnerability and Scope for Remedy. NIH, Roorkee Ghosh NC, Singh RD (2009) Groundwater Arsenic Contamination in India: vulnerability and Scope for Remedy. NIH, Roorkee
go back to reference Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090CrossRef Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090CrossRef
go back to reference Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Sasaki K, Saha BB, Saepuloh A, Jinno K (2010) Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment. J Hazard Mater 180:50–62CrossRef Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Sasaki K, Saha BB, Saepuloh A, Jinno K (2010) Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment. J Hazard Mater 180:50–62CrossRef
go back to reference Harvey CF, Swartz CH, Badruzzaman AB, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM (2005) Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. ComptesRendus. Geoscience 337:285–296CrossRef Harvey CF, Swartz CH, Badruzzaman AB, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM (2005) Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. ComptesRendus. Geoscience 337:285–296CrossRef
go back to reference Heroy DC, Kuehl SA, Goodbred SL (2003) Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and late quaternary climate change. Sed Geol 155:343–359CrossRef Heroy DC, Kuehl SA, Goodbred SL (2003) Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and late quaternary climate change. Sed Geol 155:343–359CrossRef
go back to reference Huizing HG (1971) A reconnaissance study of the mineralogy of sand fractions from East Pakistan sediments and soils. Geoderma 6:109–133CrossRef Huizing HG (1971) A reconnaissance study of the mineralogy of sand fractions from East Pakistan sediments and soils. Geoderma 6:109–133CrossRef
go back to reference Jain KS, Agarwal PK, Singh VP (2007) Hydrology and water resources of India. Water SciTechnol Library Springer 57:419–472 Jain KS, Agarwal PK, Singh VP (2007) Hydrology and water resources of India. Water SciTechnol Library Springer 57:419–472
go back to reference Kim SH, Kim K, Ko KS, Kim Y, Lee KS (2012) Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 87:851–856CrossRef Kim SH, Kim K, Ko KS, Kim Y, Lee KS (2012) Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 87:851–856CrossRef
go back to reference Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1039CrossRef Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1039CrossRef
go back to reference Kumar M, Kumari K, Singh UK, Ramanathan AL (2008) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57:873–884CrossRef Kumar M, Kumari K, Singh UK, Ramanathan AL (2008) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57:873–884CrossRef
go back to reference Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, Sracek O (2010a) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J Geochem Explor 105:83–94CrossRef Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, Sracek O (2010a) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J Geochem Explor 105:83–94CrossRef
go back to reference Kumar P, Kumar M, Ramanathan AL, Tsujimura M (2010b) Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective. Environ Geochem Health 32:129–146CrossRef Kumar P, Kumar M, Ramanathan AL, Tsujimura M (2010b) Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective. Environ Geochem Health 32:129–146CrossRef
go back to reference Liao CM, Lin TL, Chen SC (2008) A Weibull-PBPK model for assessing risk of arsenic-induced skin lesions in children. Sci Total Environ 392:203–217CrossRef Liao CM, Lin TL, Chen SC (2008) A Weibull-PBPK model for assessing risk of arsenic-induced skin lesions in children. Sci Total Environ 392:203–217CrossRef
go back to reference Mahanta C (1995) Distribution of nutrients and toxic metals in the Brahmaputra River Basin. Ph.D thesis Jawaharlal Nehru University, India Mahanta C (1995) Distribution of nutrients and toxic metals in the Brahmaputra River Basin. Ph.D thesis Jawaharlal Nehru University, India
go back to reference Mithal RS, Srivastava LS (1959) Geotectonic positions and earthquakes of Ganga-Brahmaputra region. In: Proceedings of the first symposium on earthquake engineering. University of Roorkee, Roorkee, India Mithal RS, Srivastava LS (1959) Geotectonic positions and earthquakes of Ganga-Brahmaputra region. In: Proceedings of the first symposium on earthquake engineering. University of Roorkee, Roorkee, India
go back to reference Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163 Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163
go back to reference Pillai KS, Stanley VA (2002) Implications of fluoride an endless uncertainty. J Environ Biol Acad Environ Biol India 23:81–87 Pillai KS, Stanley VA (2002) Implications of fluoride an endless uncertainty. J Environ Biol Acad Environ Biol India 23:81–87
go back to reference Piper AM (1953) A graphic procedure for the geo-chemical interpretation of water analysis. USGS groundwater. Note 12 Piper AM (1953) A graphic procedure for the geo-chemical interpretation of water analysis. USGS groundwater. Note 12
go back to reference Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in theground water environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61 Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in theground water environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61
go back to reference Reddy DP (2012) Arsenic and iron contamination in ground water in lower Brahmaputra Basin in Bongaigaon and part of Dhubri Districts of Assam State. India Water Week-Water, Energy and Food Security, India Reddy DP (2012) Arsenic and iron contamination in ground water in lower Brahmaputra Basin in Bongaigaon and part of Dhubri Districts of Assam State. India Water Week-Water, Energy and Food Security, India
go back to reference Reddy AG, Reddy DV, Rao PN, Prasad KM (2010) Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India. Environ Monit Assess 171:561–577CrossRef Reddy AG, Reddy DV, Rao PN, Prasad KM (2010) Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India. Environ Monit Assess 171:561–577CrossRef
go back to reference Saxena V, Ahmed S (2001) Dissolution of fluoride in groundwater: a water–rock interaction study. Environ Geol 40:1084–1087CrossRef Saxena V, Ahmed S (2001) Dissolution of fluoride in groundwater: a water–rock interaction study. Environ Geol 40:1084–1087CrossRef
go back to reference Saxena V, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736CrossRef Saxena V, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736CrossRef
go back to reference Singh AK (2004) Arsenic contamination in groundwater of North Eastern India. In: 11th national symposium on hydrology with focal theme on water quality. National Institute of Hydrology Roorkee, proceeding, Vol 255262 Singh AK (2004) Arsenic contamination in groundwater of North Eastern India. In: 11th national symposium on hydrology with focal theme on water quality. National Institute of Hydrology Roorkee, proceeding, Vol 255262
go back to reference Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRef Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRef
go back to reference Smedley PL, Nicolli HB, Macdonald DM, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284CrossRef Smedley PL, Nicolli HB, Macdonald DM, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284CrossRef
go back to reference Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477CrossRef Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477CrossRef
go back to reference Susheela AK (2001) Fluorosis: Indian scienario: a treatise on fluorosis. Fluorosis Research and Rural Development Foundation, Delhi Susheela AK (2001) Fluorosis: Indian scienario: a treatise on fluorosis. Fluorosis Research and Rural Development Foundation, Delhi
go back to reference Tapponier P, Molnar P (1977) Active faulting and Cenozoic tectonics of China. J Geophys Res 82:2905–2930CrossRef Tapponier P, Molnar P (1977) Active faulting and Cenozoic tectonics of China. J Geophys Res 82:2905–2930CrossRef
go back to reference Vencelides Z, Sracek O, Prommer H (2007) Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic. J Contam Hydrol 89:270–294CrossRef Vencelides Z, Sracek O, Prommer H (2007) Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic. J Contam Hydrol 89:270–294CrossRef
go back to reference World Health Organization (WHO) (2008) Guidelines for drinking-water quality: incorporating first and second addenda to 3rd edn, vol 1, Recommendations World Health Organization (WHO) (2008) Guidelines for drinking-water quality: incorporating first and second addenda to 3rd edn, vol 1, Recommendations
Metadata
Title
Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India
Authors
Nilotpal Das
Kali P. Sarma
Arbind K. Patel
Jyoti P. Deka
Aparna Das
Abhay Kumar
Patrick J. Shea
Manish Kumar
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 4/2017
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6488-x

Other articles of this Issue 4/2017

Environmental Earth Sciences 4/2017 Go to the issue