Skip to main content
Top
Published in: Wireless Personal Communications 4/2017

07-11-2016

Secrecy Capacity of Two-Hop Relay Assisted Wiretap Channels

Authors: Meysam Mirzaee, Soroush Akhlaghi

Published in: Wireless Personal Communications | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Incorporating the physical layer characteristics to secure communications has received considerable attention in recent years. Moreover, cooperation with some nodes of network can give benefits of multiple-antenna systems, increasing the secrecy capacity of such channels. In this paper, we consider cooperative wiretap channel with the help of an Amplify and Forward (AF) relay in the middle of transmission to transmit confidential messages from source to legitimate receiver in the presence of an eavesdropper. In this regard, the secrecy capacity of AF relaying is derived, assuming the relay is subject to a peak power constraint. To this end, an achievable secrecy rate for Gaussian input assumption is derived. Then, it is proved that any rate greater than this secrecy rate is not achievable. To do this, the capacity of a genie-aided channel as an upper bound for the secrecy capacity of the underlying channel is derived, showing this upper bound is equal to the computed achievable secrecy rate with Gaussian input assumption. Moreover, the power allocation policy at the relay is formulated as a fractional quadratic problem, and the optimal solution is analytically derived. Accordingly, the corresponding secrecy capacity is compared to the Decode and Forward (DF) strategy which is served as a benchmark in the current work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Future work will investigate the effect of direct links on the studied problem.
 
2
For notational convenience, we ignore the index of symbols in the rest of paper.
 
3
The number of positive roots of a polynomial with real coefficients ordered in terms of ascending power of the variable is either equal to the number of variations in sign of consecutive non-zero coefficients or less than this by a multiple of 2 [35].
 
4
It is worth mentioning that \(\frac{1+\alpha |\omega |^2}{1+\beta |\omega |^2}\) is an increasing function with respect to \(|\omega |\) for \(\alpha \,{>}\,\beta \), thus decreasing \(|\omega |\) reduces the secrecy rate of the second hop.
 
5
Please note that here it is assumed the transmit SNR at the source is 10 dB. Thus, noting the received noise at this node is of unit power, thus the transmit power at the source becomes 10 dBW.
 
Literature
2.
go back to reference Schneier, B. (1998). Cryptographic design vulnerabilities. IEEE Computer, 31(9), 29–33.CrossRef Schneier, B. (1998). Cryptographic design vulnerabilities. IEEE Computer, 31(9), 29–33.CrossRef
4.
go back to reference Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wiretap channel. IEEE Transactions on Information Theory, IT–24(4), 451–456.CrossRefMATH Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wiretap channel. IEEE Transactions on Information Theory, IT–24(4), 451–456.CrossRefMATH
5.
go back to reference Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATH Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATH
7.
go back to reference Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 2466–2470). Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 2466–2470).
8.
go back to reference Oggier, F., & Hassibi, B. (2008). The secrecy capacity of the MIMO wiretap channel. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 524–528). Oggier, F., & Hassibi, B. (2008). The secrecy capacity of the MIMO wiretap channel. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 524–528).
9.
go back to reference Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Transactions on Information Theory, 56(7), 3088–3104.MathSciNetCrossRef Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Transactions on Information Theory, 56(7), 3088–3104.MathSciNetCrossRef
10.
go back to reference Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas—Part II: The MIMOME wiretap channel. IEEE Transactions on Information Theory, 56(11), 5515–5532.MathSciNetCrossRef Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas—Part II: The MIMOME wiretap channel. IEEE Transactions on Information Theory, 56(11), 5515–5532.MathSciNetCrossRef
11.
go back to reference Ekrem, E., & Ulukus, S. (2011). The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel. IEEE Transactions on Information Theory, 57(4), 2083–2114.MathSciNetCrossRef Ekrem, E., & Ulukus, S. (2011). The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel. IEEE Transactions on Information Theory, 57(4), 2083–2114.MathSciNetCrossRef
12.
go back to reference Li, Q., & Ma, W. K. (2011). Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Transactions on Signal Processing, 59(8), 3799–3812.MathSciNetCrossRef Li, Q., & Ma, W. K. (2011). Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Transactions on Signal Processing, 59(8), 3799–3812.MathSciNetCrossRef
13.
go back to reference Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef
14.
go back to reference Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRef
15.
go back to reference Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH
16.
go back to reference Khajehnouri, N., & Sayed, A. H. (2007). Distributed MMSE relay strategies for wireless sensor networks. IEEE Transactions on Signal Processing, 55(7), 3336–3348.MathSciNetCrossRef Khajehnouri, N., & Sayed, A. H. (2007). Distributed MMSE relay strategies for wireless sensor networks. IEEE Transactions on Signal Processing, 55(7), 3336–3348.MathSciNetCrossRef
17.
go back to reference Havary-Nassab, V., Shahbazpanahi, S., Grami, A., & Luo, Z. Q. (2008). Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing, 56(9), 4306–4316.MathSciNetCrossRef Havary-Nassab, V., Shahbazpanahi, S., Grami, A., & Luo, Z. Q. (2008). Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing, 56(9), 4306–4316.MathSciNetCrossRef
18.
go back to reference Behbahani, A. S., & Eltawil, A. M. (2009). Amplify and forward relay networks under intereference power constraint. IEEE Transactions on Wireless Communications, 8(11), 5422–5426.CrossRef Behbahani, A. S., & Eltawil, A. M. (2009). Amplify and forward relay networks under intereference power constraint. IEEE Transactions on Wireless Communications, 8(11), 5422–5426.CrossRef
19.
go back to reference Oohama, Y. (2001). Coding for relay channels with confidential messages. In Information Theory Workshop (ITW), IEEE (pp. 87–89). Oohama, Y. (2001). Coding for relay channels with confidential messages. In Information Theory Workshop (ITW), IEEE (pp. 87–89).
20.
go back to reference He, X., & Yener, A. (2010). Cooperation with an untrusted relay: A secrecy perspective. IEEE Transactions on Information Theory, 56(8), 3807–3827.MathSciNetCrossRef He, X., & Yener, A. (2010). Cooperation with an untrusted relay: A secrecy perspective. IEEE Transactions on Information Theory, 56(8), 3807–3827.MathSciNetCrossRef
21.
go back to reference Yuksel, M., & Erkip, E. (2007). The relay channel with a wire-tapper. In Proceedings of 41st Annual Conference on Information Sciences and Systems (CISS), IEEE (pp. 13–18). Yuksel, M., & Erkip, E. (2007). The relay channel with a wire-tapper. In Proceedings of 41st Annual Conference on Information Sciences and Systems (CISS), IEEE (pp. 13–18).
22.
go back to reference Lai, L., & Gamal, H. E. (2008). The relay-eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.MathSciNetCrossRefMATH Lai, L., & Gamal, H. E. (2008). The relay-eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.MathSciNetCrossRefMATH
23.
go back to reference Tang, X., Liu, R., Spasojevic, P., & Poor, H. V. (2008). The Gaussian wiretap channel with a helping interferer. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 389–393). Tang, X., Liu, R., Spasojevic, P., & Poor, H. V. (2008). The Gaussian wiretap channel with a helping interferer. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 389–393).
24.
go back to reference Tekin, E., & Yener, A. (2008). The general Gaussian multiple access and two-way wire-tap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.MathSciNetCrossRefMATH Tekin, E., & Yener, A. (2008). The general Gaussian multiple access and two-way wire-tap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.MathSciNetCrossRefMATH
25.
go back to reference Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRef Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRef
26.
go back to reference Zhang, J., & Gursoy, M. C. (2010). Relay beamforming strategies for physical-layer security. In Proceedings of 44th Annual Conference of Information Sciences and Systems (CISS), IEEE, (pp. 1–6). Zhang, J., & Gursoy, M. C. (2010). Relay beamforming strategies for physical-layer security. In Proceedings of 44th Annual Conference of Information Sciences and Systems (CISS), IEEE, (pp. 1–6).
27.
go back to reference Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRef Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRef
28.
go back to reference Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2011). Opportunistic relaying for secrecy communications: Cooperative jamming versus relay chatting. IEEE Transactions on Wireless Communications, 10(6), 1725–1729.CrossRef Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2011). Opportunistic relaying for secrecy communications: Cooperative jamming versus relay chatting. IEEE Transactions on Wireless Communications, 10(6), 1725–1729.CrossRef
29.
go back to reference Chen, J., Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay networks. IEEE Transactions on Information Forensics and Security, 7(1), 310–320.CrossRef Chen, J., Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay networks. IEEE Transactions on Information Forensics and Security, 7(1), 310–320.CrossRef
30.
go back to reference Li, J., Petropulu, A. P., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactions on Signal Processing, 59(10), 4985–4997.MathSciNetCrossRef Li, J., Petropulu, A. P., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactions on Signal Processing, 59(10), 4985–4997.MathSciNetCrossRef
31.
go back to reference Mukherjee, A., Fakoorian, S. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.CrossRef Mukherjee, A., Fakoorian, S. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.CrossRef
32.
go back to reference Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefMATH Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefMATH
33.
go back to reference Gotoh, J., & Konno, H. (2001). Maximization of the ratio of two convex quadratic functions over a polytope. Computational Optimization and Applications, 20(1), 43–60.MathSciNetCrossRefMATH Gotoh, J., & Konno, H. (2001). Maximization of the ratio of two convex quadratic functions over a polytope. Computational Optimization and Applications, 20(1), 43–60.MathSciNetCrossRefMATH
34.
go back to reference Tuy, H., Thach, P. T., & Konno, H. (2004). Optimization of polynomial fractional functions. Journal of Global Optimization, 29(1), 19–44.MathSciNetCrossRefMATH Tuy, H., Thach, P. T., & Konno, H. (2004). Optimization of polynomial fractional functions. Journal of Global Optimization, 29(1), 19–44.MathSciNetCrossRefMATH
35.
go back to reference Anderson, B., Jackson, J., & Sitharam, M. (1998). Descartes rule of signs revisited. The American Mathematical Monthly, 105(5), 447–451.MathSciNetCrossRefMATH Anderson, B., Jackson, J., & Sitharam, M. (1998). Descartes rule of signs revisited. The American Mathematical Monthly, 105(5), 447–451.MathSciNetCrossRefMATH
Metadata
Title
Secrecy Capacity of Two-Hop Relay Assisted Wiretap Channels
Authors
Meysam Mirzaee
Soroush Akhlaghi
Publication date
07-11-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3754-2

Other articles of this Issue 4/2017

Wireless Personal Communications 4/2017 Go to the issue