Skip to main content
Erschienen in: Wireless Personal Communications 4/2017

07.11.2016

Secrecy Capacity of Two-Hop Relay Assisted Wiretap Channels

verfasst von: Meysam Mirzaee, Soroush Akhlaghi

Erschienen in: Wireless Personal Communications | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Incorporating the physical layer characteristics to secure communications has received considerable attention in recent years. Moreover, cooperation with some nodes of network can give benefits of multiple-antenna systems, increasing the secrecy capacity of such channels. In this paper, we consider cooperative wiretap channel with the help of an Amplify and Forward (AF) relay in the middle of transmission to transmit confidential messages from source to legitimate receiver in the presence of an eavesdropper. In this regard, the secrecy capacity of AF relaying is derived, assuming the relay is subject to a peak power constraint. To this end, an achievable secrecy rate for Gaussian input assumption is derived. Then, it is proved that any rate greater than this secrecy rate is not achievable. To do this, the capacity of a genie-aided channel as an upper bound for the secrecy capacity of the underlying channel is derived, showing this upper bound is equal to the computed achievable secrecy rate with Gaussian input assumption. Moreover, the power allocation policy at the relay is formulated as a fractional quadratic problem, and the optimal solution is analytically derived. Accordingly, the corresponding secrecy capacity is compared to the Decode and Forward (DF) strategy which is served as a benchmark in the current work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Future work will investigate the effect of direct links on the studied problem.
 
2
For notational convenience, we ignore the index of symbols in the rest of paper.
 
3
The number of positive roots of a polynomial with real coefficients ordered in terms of ascending power of the variable is either equal to the number of variations in sign of consecutive non-zero coefficients or less than this by a multiple of 2 [35].
 
4
It is worth mentioning that \(\frac{1+\alpha |\omega |^2}{1+\beta |\omega |^2}\) is an increasing function with respect to \(|\omega |\) for \(\alpha \,{>}\,\beta \), thus decreasing \(|\omega |\) reduces the secrecy rate of the second hop.
 
5
Please note that here it is assumed the transmit SNR at the source is 10 dB. Thus, noting the received noise at this node is of unit power, thus the transmit power at the source becomes 10 dBW.
 
Literatur
2.
Zurück zum Zitat Schneier, B. (1998). Cryptographic design vulnerabilities. IEEE Computer, 31(9), 29–33.CrossRef Schneier, B. (1998). Cryptographic design vulnerabilities. IEEE Computer, 31(9), 29–33.CrossRef
4.
Zurück zum Zitat Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wiretap channel. IEEE Transactions on Information Theory, IT–24(4), 451–456.CrossRefMATH Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wiretap channel. IEEE Transactions on Information Theory, IT–24(4), 451–456.CrossRefMATH
5.
Zurück zum Zitat Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATH Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATH
7.
Zurück zum Zitat Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 2466–2470). Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 2466–2470).
8.
Zurück zum Zitat Oggier, F., & Hassibi, B. (2008). The secrecy capacity of the MIMO wiretap channel. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 524–528). Oggier, F., & Hassibi, B. (2008). The secrecy capacity of the MIMO wiretap channel. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 524–528).
9.
Zurück zum Zitat Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Transactions on Information Theory, 56(7), 3088–3104.MathSciNetCrossRef Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Transactions on Information Theory, 56(7), 3088–3104.MathSciNetCrossRef
10.
Zurück zum Zitat Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas—Part II: The MIMOME wiretap channel. IEEE Transactions on Information Theory, 56(11), 5515–5532.MathSciNetCrossRef Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas—Part II: The MIMOME wiretap channel. IEEE Transactions on Information Theory, 56(11), 5515–5532.MathSciNetCrossRef
11.
Zurück zum Zitat Ekrem, E., & Ulukus, S. (2011). The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel. IEEE Transactions on Information Theory, 57(4), 2083–2114.MathSciNetCrossRef Ekrem, E., & Ulukus, S. (2011). The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel. IEEE Transactions on Information Theory, 57(4), 2083–2114.MathSciNetCrossRef
12.
Zurück zum Zitat Li, Q., & Ma, W. K. (2011). Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Transactions on Signal Processing, 59(8), 3799–3812.MathSciNetCrossRef Li, Q., & Ma, W. K. (2011). Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Transactions on Signal Processing, 59(8), 3799–3812.MathSciNetCrossRef
13.
Zurück zum Zitat Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef
14.
Zurück zum Zitat Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRef
15.
Zurück zum Zitat Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH
16.
Zurück zum Zitat Khajehnouri, N., & Sayed, A. H. (2007). Distributed MMSE relay strategies for wireless sensor networks. IEEE Transactions on Signal Processing, 55(7), 3336–3348.MathSciNetCrossRef Khajehnouri, N., & Sayed, A. H. (2007). Distributed MMSE relay strategies for wireless sensor networks. IEEE Transactions on Signal Processing, 55(7), 3336–3348.MathSciNetCrossRef
17.
Zurück zum Zitat Havary-Nassab, V., Shahbazpanahi, S., Grami, A., & Luo, Z. Q. (2008). Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing, 56(9), 4306–4316.MathSciNetCrossRef Havary-Nassab, V., Shahbazpanahi, S., Grami, A., & Luo, Z. Q. (2008). Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing, 56(9), 4306–4316.MathSciNetCrossRef
18.
Zurück zum Zitat Behbahani, A. S., & Eltawil, A. M. (2009). Amplify and forward relay networks under intereference power constraint. IEEE Transactions on Wireless Communications, 8(11), 5422–5426.CrossRef Behbahani, A. S., & Eltawil, A. M. (2009). Amplify and forward relay networks under intereference power constraint. IEEE Transactions on Wireless Communications, 8(11), 5422–5426.CrossRef
19.
Zurück zum Zitat Oohama, Y. (2001). Coding for relay channels with confidential messages. In Information Theory Workshop (ITW), IEEE (pp. 87–89). Oohama, Y. (2001). Coding for relay channels with confidential messages. In Information Theory Workshop (ITW), IEEE (pp. 87–89).
20.
Zurück zum Zitat He, X., & Yener, A. (2010). Cooperation with an untrusted relay: A secrecy perspective. IEEE Transactions on Information Theory, 56(8), 3807–3827.MathSciNetCrossRef He, X., & Yener, A. (2010). Cooperation with an untrusted relay: A secrecy perspective. IEEE Transactions on Information Theory, 56(8), 3807–3827.MathSciNetCrossRef
21.
Zurück zum Zitat Yuksel, M., & Erkip, E. (2007). The relay channel with a wire-tapper. In Proceedings of 41st Annual Conference on Information Sciences and Systems (CISS), IEEE (pp. 13–18). Yuksel, M., & Erkip, E. (2007). The relay channel with a wire-tapper. In Proceedings of 41st Annual Conference on Information Sciences and Systems (CISS), IEEE (pp. 13–18).
22.
Zurück zum Zitat Lai, L., & Gamal, H. E. (2008). The relay-eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.MathSciNetCrossRefMATH Lai, L., & Gamal, H. E. (2008). The relay-eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.MathSciNetCrossRefMATH
23.
Zurück zum Zitat Tang, X., Liu, R., Spasojevic, P., & Poor, H. V. (2008). The Gaussian wiretap channel with a helping interferer. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 389–393). Tang, X., Liu, R., Spasojevic, P., & Poor, H. V. (2008). The Gaussian wiretap channel with a helping interferer. In Proceedings of International Symposium of Information Theory (ISIT), IEEE (pp. 389–393).
24.
Zurück zum Zitat Tekin, E., & Yener, A. (2008). The general Gaussian multiple access and two-way wire-tap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.MathSciNetCrossRefMATH Tekin, E., & Yener, A. (2008). The general Gaussian multiple access and two-way wire-tap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.MathSciNetCrossRefMATH
25.
Zurück zum Zitat Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRef Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRef
26.
Zurück zum Zitat Zhang, J., & Gursoy, M. C. (2010). Relay beamforming strategies for physical-layer security. In Proceedings of 44th Annual Conference of Information Sciences and Systems (CISS), IEEE, (pp. 1–6). Zhang, J., & Gursoy, M. C. (2010). Relay beamforming strategies for physical-layer security. In Proceedings of 44th Annual Conference of Information Sciences and Systems (CISS), IEEE, (pp. 1–6).
27.
Zurück zum Zitat Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRef Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRef
28.
Zurück zum Zitat Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2011). Opportunistic relaying for secrecy communications: Cooperative jamming versus relay chatting. IEEE Transactions on Wireless Communications, 10(6), 1725–1729.CrossRef Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2011). Opportunistic relaying for secrecy communications: Cooperative jamming versus relay chatting. IEEE Transactions on Wireless Communications, 10(6), 1725–1729.CrossRef
29.
Zurück zum Zitat Chen, J., Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay networks. IEEE Transactions on Information Forensics and Security, 7(1), 310–320.CrossRef Chen, J., Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay networks. IEEE Transactions on Information Forensics and Security, 7(1), 310–320.CrossRef
30.
Zurück zum Zitat Li, J., Petropulu, A. P., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactions on Signal Processing, 59(10), 4985–4997.MathSciNetCrossRef Li, J., Petropulu, A. P., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactions on Signal Processing, 59(10), 4985–4997.MathSciNetCrossRef
31.
Zurück zum Zitat Mukherjee, A., Fakoorian, S. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.CrossRef Mukherjee, A., Fakoorian, S. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.CrossRef
32.
Zurück zum Zitat Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefMATH Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefMATH
33.
Zurück zum Zitat Gotoh, J., & Konno, H. (2001). Maximization of the ratio of two convex quadratic functions over a polytope. Computational Optimization and Applications, 20(1), 43–60.MathSciNetCrossRefMATH Gotoh, J., & Konno, H. (2001). Maximization of the ratio of two convex quadratic functions over a polytope. Computational Optimization and Applications, 20(1), 43–60.MathSciNetCrossRefMATH
34.
Zurück zum Zitat Tuy, H., Thach, P. T., & Konno, H. (2004). Optimization of polynomial fractional functions. Journal of Global Optimization, 29(1), 19–44.MathSciNetCrossRefMATH Tuy, H., Thach, P. T., & Konno, H. (2004). Optimization of polynomial fractional functions. Journal of Global Optimization, 29(1), 19–44.MathSciNetCrossRefMATH
35.
Zurück zum Zitat Anderson, B., Jackson, J., & Sitharam, M. (1998). Descartes rule of signs revisited. The American Mathematical Monthly, 105(5), 447–451.MathSciNetCrossRefMATH Anderson, B., Jackson, J., & Sitharam, M. (1998). Descartes rule of signs revisited. The American Mathematical Monthly, 105(5), 447–451.MathSciNetCrossRefMATH
36.
Metadaten
Titel
Secrecy Capacity of Two-Hop Relay Assisted Wiretap Channels
verfasst von
Meysam Mirzaee
Soroush Akhlaghi
Publikationsdatum
07.11.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3754-2

Weitere Artikel der Ausgabe 4/2017

Wireless Personal Communications 4/2017 Zur Ausgabe

Neuer Inhalt