Skip to main content
Top
Published in: Neural Computing and Applications 12/2023

20-12-2022 | Original Article

SedimentNet — a 1D-CNN machine learning model for prediction of hydrodynamic forces in rapidly varied flows

Authors: Muhammad Zain Bin Riaz, Umair Iqbal, Shu-Qing Yang, Muttucumaru Sivakumar, Keith Enever, Usman Khalil, Rong Ji, Nadeeka Sajeewani Miguntanna

Published in: Neural Computing and Applications | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In natural free surface flows, sediment particles in the surface layer of a sediment bed are moved and entrained by the fluctuating hydrodynamic forces, such as lift and drag, exerted by the overlying flow. Accurate prediction of near-bed hydrodynamic forces in rapidly varied flows is vital for coastal sediment transport and morphodynamics. Directly measured hydrodynamic forces within the rapidly varied flows over rough bed layer have been limited by previous spatial averaging shear force studies. Therefore, the direct measurements were designed and adapted to estimate tidal bore forces, including longitudinal (drag) and vertical (lift) force on near-bed sediment particle. Specially designed experiments were conducted to measure the instantaneous forces using a highly sensitive force sensor assembled with a target sphere. A novel 1D-CNN model (i.e. SedimentNet) has been developed for the prediction of hydrodynamic forces and compared with existing machine learning models (i.e. Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Support Vector Regressor (SVR), XGBoost, \(k\)-Nearest Neighbour (\(k\)-NN)). The parameters affecting near-bed hydrodynamic forces are also analysed. In the context of machine learning, both conventional dataset split and fivefold cross-validation approaches were implemented. The results indicated that the proposed SedimentNet was able to achieve marginally better cross-validation performance (i.e. \({R}^{2}\) score of 0.77 for drag force, \({R}^{2}\) score of 0.96 for lift force) for the prediction of drag and lift forces. RF and XGBoost were the second best models with \({R}^{2}\) score of 0.73 and 0.95 for drag and lift force prediction, respectively. Results also showed the potential of machine learning models for the efficient prediction of complex hydrodynamic forces in a coastal environment. A use-case edge computing solution for the reported machine learning-based prediction of hydrodynamic forces has also been proposed and discussed to demonstrate the practical implementability of the presented research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Riaz MZB et al (2022) Performance evaluation of force transducer for the observation of sediment entrainment in rapidly varied flows. J Atmos Oceanic Tech 39(10):1579–1589CrossRef Riaz MZB et al (2022) Performance evaluation of force transducer for the observation of sediment entrainment in rapidly varied flows. J Atmos Oceanic Tech 39(10):1579–1589CrossRef
2.
go back to reference Cao D, Chiew Y-M, Yang S-Q (2016) Injection effects on sediment transport in closed-conduit flows. Acta Geophys 64(1):125–148CrossRef Cao D, Chiew Y-M, Yang S-Q (2016) Injection effects on sediment transport in closed-conduit flows. Acta Geophys 64(1):125–148CrossRef
3.
go back to reference Foster, D., et al., Field evidence of pressure gradient induced incipient motion. Journal of Geophysical Research: Oceans, 2006. 111(C5). Foster, D., et al., Field evidence of pressure gradient induced incipient motion. Journal of Geophysical Research: Oceans, 2006. 111(C5).
4.
go back to reference Yang CT, Marsooli R, Aalami MT (2009) Evaluation of total load sediment transport formulas using ANN. Int J Sedim Res 24(3):274–286CrossRef Yang CT, Marsooli R, Aalami MT (2009) Evaluation of total load sediment transport formulas using ANN. Int J Sedim Res 24(3):274–286CrossRef
6.
go back to reference Emadzadeh A, Chiew YM, Afzalimehr H (2010) Effect of accelerating and decelerating flows on incipient motion in sand bed streams. Adv Water Resour 33(9):1094–1104CrossRef Emadzadeh A, Chiew YM, Afzalimehr H (2010) Effect of accelerating and decelerating flows on incipient motion in sand bed streams. Adv Water Resour 33(9):1094–1104CrossRef
7.
go back to reference Lee H, Balachandar S (2012) Critical shear stress for incipient motion of a particle on a rough bed. J Geophys Res: Earth Surface 117(F1):1–19 Lee H, Balachandar S (2012) Critical shear stress for incipient motion of a particle on a rough bed. J Geophys Res: Earth Surface 117(F1):1–19
8.
go back to reference Dwivedi A et al (2011) Flow structures and hydrodynamic force during sediment entrainment. Water Resour Res 47(1):1–18CrossRef Dwivedi A et al (2011) Flow structures and hydrodynamic force during sediment entrainment. Water Resour Res 47(1):1–18CrossRef
9.
go back to reference Riaz MZB et al (2021) Direct measurements of hydrodynamic forces induced by tidal bores. Water Resour Res 57(4):e2020WR028970CrossRef Riaz MZB et al (2021) Direct measurements of hydrodynamic forces induced by tidal bores. Water Resour Res 57(4):e2020WR028970CrossRef
10.
go back to reference Schmeeckle MW, Nelson JM, Shreve RL (2007) Forces on stationary particles in near-bed turbulent flows. J Geophys Res-Part F-Earth Surf 112(F2):1–21 Schmeeckle MW, Nelson JM, Shreve RL (2007) Forces on stationary particles in near-bed turbulent flows. J Geophys Res-Part F-Earth Surf 112(F2):1–21
11.
go back to reference Einstein HA, El-Samni E-SA (1949) Hydrodynamic forces on a rough wall. Rev Mod Phys 21(3):520CrossRef Einstein HA, El-Samni E-SA (1949) Hydrodynamic forces on a rough wall. Rev Mod Phys 21(3):520CrossRef
12.
go back to reference Zeng L et al (2008) Interactions of a stationary finite-sized particle with wall turbulence. J Fluid Mech 594:271–305CrossRefMATH Zeng L et al (2008) Interactions of a stationary finite-sized particle with wall turbulence. J Fluid Mech 594:271–305CrossRefMATH
13.
go back to reference Derksen J, Larsen R (2011) Drag and lift forces on random assemblies of wall-attached spheres in low-Reynolds-number shear flow. J Fluid Mech 673:548–573CrossRefMATH Derksen J, Larsen R (2011) Drag and lift forces on random assemblies of wall-attached spheres in low-Reynolds-number shear flow. J Fluid Mech 673:548–573CrossRefMATH
14.
go back to reference Detert M, Weitbrecht V, Jirka GH (2010) Laboratory measurements on turbulent pressure fluctuations in and above gravel beds. J Hydraul Eng 136(10):779–789CrossRef Detert M, Weitbrecht V, Jirka GH (2010) Laboratory measurements on turbulent pressure fluctuations in and above gravel beds. J Hydraul Eng 136(10):779–789CrossRef
15.
go back to reference Riaz, M.Z.B., S.-Q. Yang, and M. Sivakumar, (2021) Laboratory measurements of velocity and hydrodynamic force over coarse fixed rough bed, in ICHWR CEWRE Riaz, M.Z.B., S.-Q. Yang, and M. Sivakumar, (2021) Laboratory measurements of velocity and hydrodynamic force over coarse fixed rough bed, in ICHWR CEWRE
16.
go back to reference Frank D et al (2015) Incipient motion of surf zone sediments. J Geophys Res: Oceans 120(8):5710–5734CrossRef Frank D et al (2015) Incipient motion of surf zone sediments. J Geophys Res: Oceans 120(8):5710–5734CrossRef
17.
go back to reference Riaz, M.Z.B., S.-Q. Yang, and M. Sivakumar, (2021) Hydrodynamic forces generated on a coarse spherical particle beneath a tidal bore, in webinar on experimental methods and laboratory instrumentation in Hydraulics. InstGeoph PAS_Publs Riaz, M.Z.B., S.-Q. Yang, and M. Sivakumar, (2021) Hydrodynamic forces generated on a coarse spherical particle beneath a tidal bore, in webinar on experimental methods and laboratory instrumentation in Hydraulics. InstGeoph PAS_Publs
18.
go back to reference Goldstein EB, Coco G (2014) A machine learning approach for the prediction of settling velocity. Water Resour Res 50(4):3595–3601CrossRef Goldstein EB, Coco G (2014) A machine learning approach for the prediction of settling velocity. Water Resour Res 50(4):3595–3601CrossRef
20.
go back to reference Iqbal, U., et al., Prediction of Hydraulic Blockage at Cross Drainage Structures using Regression Analysis. arXiv preprint arXiv:2103.10930, 2021. Iqbal, U., et al., Prediction of Hydraulic Blockage at Cross Drainage Structures using Regression Analysis. arXiv preprint arXiv:​2103.​10930, 2021.
21.
go back to reference Lal A, Datta B (2021) Application of the group method of data handling and variable importance analysis for prediction and modelling of saltwater intrusion processes in coastal aquifers. Neural Comput Appl 33(9):4179–4190CrossRef Lal A, Datta B (2021) Application of the group method of data handling and variable importance analysis for prediction and modelling of saltwater intrusion processes in coastal aquifers. Neural Comput Appl 33(9):4179–4190CrossRef
22.
go back to reference Dawood M, Asif A (2020) Deep-PHURIE: deep learning based hurricane intensity estimation from infrared satellite imagery. Neural Comput Appl 32(13):9009–9017CrossRef Dawood M, Asif A (2020) Deep-PHURIE: deep learning based hurricane intensity estimation from infrared satellite imagery. Neural Comput Appl 32(13):9009–9017CrossRef
23.
go back to reference Iqbal U et al (2022) Prediction of hydraulic blockage at culverts using lab scale simulated hydraulic data. Urban Water J 19(7):686–699CrossRef Iqbal U et al (2022) Prediction of hydraulic blockage at culverts using lab scale simulated hydraulic data. Urban Water J 19(7):686–699CrossRef
24.
go back to reference Roshni T, Jha MK, Drisya J (2020) Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Comput Appl 32:1–18CrossRef Roshni T, Jha MK, Drisya J (2020) Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Comput Appl 32:1–18CrossRef
25.
go back to reference Jiang R, Zhao K (2021) Using machine learning method on calculation of boundary layer height. Neural Comput Appl 34:1–13 Jiang R, Zhao K (2021) Using machine learning method on calculation of boundary layer height. Neural Comput Appl 34:1–13
26.
go back to reference Yang S-Q (2019) Formula for sediment transport subject to vertical flows. J Hydraul Eng 145(5):04019013CrossRef Yang S-Q (2019) Formula for sediment transport subject to vertical flows. J Hydraul Eng 145(5):04019013CrossRef
27.
go back to reference Lamb MP, Brun F, Fuller BM (2017) Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: implications for flow resistance and sediment transport. Water Resour Res 53(9):7607–7629CrossRef Lamb MP, Brun F, Fuller BM (2017) Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: implications for flow resistance and sediment transport. Water Resour Res 53(9):7607–7629CrossRef
28.
go back to reference Breiman L et al (2017) Classification and regression trees. Routledge, LondonCrossRef Breiman L et al (2017) Classification and regression trees. Routledge, LondonCrossRef
30.
go back to reference Li Y et al (2018) Random forest regression for online capacity estimation of lithium-ion batteries. Appl Energy 232:197–210CrossRef Li Y et al (2018) Random forest regression for online capacity estimation of lithium-ion batteries. Appl Energy 232:197–210CrossRef
31.
go back to reference Abraham, A., Artificial neural networks. Handbook of measuring system design, 2005. Abraham, A., Artificial neural networks. Handbook of measuring system design, 2005.
32.
go back to reference Mehrotra K, Mohan CK, Ranka S (1997) Elements of artificial neural networks. MIT press, CambridgeMATH Mehrotra K, Mohan CK, Ranka S (1997) Elements of artificial neural networks. MIT press, CambridgeMATH
33.
go back to reference Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197CrossRef Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197CrossRef
34.
go back to reference Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31CrossRef Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31CrossRef
35.
go back to reference Boser BE, Guyon IM and Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory. Boser BE, Guyon IM and Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory.
36.
go back to reference Fix E, Hodges JL (1989) Discriminatory analysis nonparametric discrimination: consistency properties. Int Stat Rev/Rev Int de Stat 57(3):238–247CrossRefMATH Fix E, Hodges JL (1989) Discriminatory analysis nonparametric discrimination: consistency properties. Int Stat Rev/Rev Int de Stat 57(3):238–247CrossRefMATH
37.
go back to reference Chen T et al (2015) Xgboost: extreme gradient boosting. R Package Version 1(4):1–4 Chen T et al (2015) Xgboost: extreme gradient boosting. R Package Version 1(4):1–4
38.
go back to reference Abba SI et al (2020) Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environ Sci Pollut Res 27(33):41524–41539CrossRef Abba SI et al (2020) Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environ Sci Pollut Res 27(33):41524–41539CrossRef
39.
go back to reference Iqbal U et al (2021) Automating visual blockage classification of culverts with deep learning. Appl Sci 11(16):7561CrossRef Iqbal U et al (2021) Automating visual blockage classification of culverts with deep learning. Appl Sci 11(16):7561CrossRef
40.
go back to reference García-Gutiérrez J et al (2015) A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing 167:24–31CrossRef García-Gutiérrez J et al (2015) A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing 167:24–31CrossRef
41.
go back to reference Barthélemy J et al (2019) Edge-computing video analytics for real-time traffic monitoring in a smart city. Sensors 19(9):2048CrossRef Barthélemy J et al (2019) Edge-computing video analytics for real-time traffic monitoring in a smart city. Sensors 19(9):2048CrossRef
42.
go back to reference Barthelemy J et al (2020) Problem-driven and technology-enabled solutions for safer communities: the case of stormwater management in the Illawarra-Shoalhaven region (NSW, Australia) Handbook of Smart Cities. Springer, Cham, pp 1–28 Barthelemy J et al (2020) Problem-driven and technology-enabled solutions for safer communities: the case of stormwater management in the Illawarra-Shoalhaven region (NSW, Australia) Handbook of Smart Cities. Springer, Cham, pp 1–28
43.
go back to reference Arshad B, et al. (2020) Where is my deer?-wildlife tracking and counting via edge computing and deep learning. In: 2020 IEEE SENSORS. IEEE Arshad B, et al. (2020) Where is my deer?-wildlife tracking and counting via edge computing and deep learning. In: 2020 IEEE SENSORS. IEEE
Metadata
Title
SedimentNet — a 1D-CNN machine learning model for prediction of hydrodynamic forces in rapidly varied flows
Authors
Muhammad Zain Bin Riaz
Umair Iqbal
Shu-Qing Yang
Muttucumaru Sivakumar
Keith Enever
Usman Khalil
Rong Ji
Nadeeka Sajeewani Miguntanna
Publication date
20-12-2022
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 12/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-08176-3

Other articles of this Issue 12/2023

Neural Computing and Applications 12/2023 Go to the issue

S.I.: AI based Techniques and Applications for Intelligent IoT Systems

Comparative analysis of rail transit braking digital command control strategies based on neural network

Premium Partner