Skip to main content
Top
Published in: Cellulose 3/2017

07-01-2017 | Original Paper

Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent

Authors: Kui Wang, Jun Ye, Minghao Zhou, Peng Liu, Xinyu Liang, Junming Xu, Jianchun Jiang

Published in: Cellulose | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct conversion of cellulose into levulinic acid and furfural in sulfolane media with the aid of water and H2SO4 was performed at 140–220 °C under the pressures of 0–1.5 MPa. This approach could obtain 72.5 mol% levulinic acid and 11.5 mol% furfural formation under an optimal condition in which the mass ratio of sulfolane, water and H2SO4 was 90:10:1. It was found that the decrease of water content led to an increasing yield of furfural and that the maximum furfural yield (51.1 mol%) could be obtained in the absence of water. The synergism of sulfolane and water in the selective liquefied system was demonstrated to be responsible for not only reinforced effect of optimizing and isolating the target products but also for reducing re-polymerization and side reactions. Furthermore, sulfolane in our case could be recycled and re-used for the conversion of cellulose with the same yield, which shed light on the remarkable potential for future industrial application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA (2012) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Technol 3:927–931CrossRef Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA (2012) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Technol 3:927–931CrossRef
go back to reference Beerthuis R, Rothenberg G, Shiju NR (2015) Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem 17:1341–1361CrossRef Beerthuis R, Rothenberg G, Shiju NR (2015) Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem 17:1341–1361CrossRef
go back to reference Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815CrossRef Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815CrossRef
go back to reference Chatzidimitriou A, Bond JQ (2015) Oxidation of levulinic acid for the production of maleic anhydride: breathing new life into biochemicals. Green Chem 17:4367–4376CrossRef Chatzidimitriou A, Bond JQ (2015) Oxidation of levulinic acid for the production of maleic anhydride: breathing new life into biochemicals. Green Chem 17:4367–4376CrossRef
go back to reference Corma A, Oliver-Tomas B, Renz M, Simakova IL (2014) Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. J Mol Catal A 388:116–122CrossRef Corma A, Oliver-Tomas B, Renz M, Simakova IL (2014) Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. J Mol Catal A 388:116–122CrossRef
go back to reference Dutta S, Wu L, Mascal M (2015) Efficient, metal-free production of succinic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. Green Chem 17:2335–2338CrossRef Dutta S, Wu L, Mascal M (2015) Efficient, metal-free production of succinic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. Green Chem 17:2335–2338CrossRef
go back to reference Galletti AMR, Antonetti C, DeLuise V, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 14:688–694CrossRef Galletti AMR, Antonetti C, DeLuise V, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 14:688–694CrossRef
go back to reference Jeong GT (2015) Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction. Biomass Bioenergy 74:113–121CrossRef Jeong GT (2015) Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction. Biomass Bioenergy 74:113–121CrossRef
go back to reference Li H, Deng A, Ren J, Liu C, Lu Q, Zhong L, Peng F, Sun R (2014a) Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour Technol 158:313–320CrossRef Li H, Deng A, Ren J, Liu C, Lu Q, Zhong L, Peng F, Sun R (2014a) Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour Technol 158:313–320CrossRef
go back to reference Li M, Li G, Li N, Wang A, Dong W, Wang X, Cong Y (2014b) Aqueous phase hydrogenation of levulinic acid to 1, 4-pentanediol. Chem Commun 50:1414–1416CrossRef Li M, Li G, Li N, Wang A, Dong W, Wang X, Cong Y (2014b) Aqueous phase hydrogenation of levulinic acid to 1, 4-pentanediol. Chem Commun 50:1414–1416CrossRef
go back to reference Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5:9773–9777CrossRef Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5:9773–9777CrossRef
go back to reference Liu H, Zeng F, Deng L, Liao B, Pang H, Guo Q (2013) Bronsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chem 15:81–84CrossRef Liu H, Zeng F, Deng L, Liao B, Pang H, Guo Q (2013) Bronsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chem 15:81–84CrossRef
go back to reference Luo W, Sankar M, Beale AM, He Q, Kiely CJ, Bruijnincx PC, Weckhuysen BM (2015) High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat Commun 6:6540CrossRef Luo W, Sankar M, Beale AM, He Q, Kiely CJ, Bruijnincx PC, Weckhuysen BM (2015) High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat Commun 6:6540CrossRef
go back to reference Melero JA, Morales G, Iglesias J, Paniagua M, Hernandez B, Penedo S (2013) Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Appl Catal A 466:116–122CrossRef Melero JA, Morales G, Iglesias J, Paniagua M, Hernandez B, Penedo S (2013) Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Appl Catal A 466:116–122CrossRef
go back to reference Morais ARC, Lopes AMC, Lukasik RB (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115:3–27CrossRef Morais ARC, Lopes AMC, Lukasik RB (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115:3–27CrossRef
go back to reference Muranaka Y, Suzuki T, Sawanishi H, Hasegawa I, Mae K (2014) Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic acid. Ind Eng Chem Res 53:11611–11621CrossRef Muranaka Y, Suzuki T, Sawanishi H, Hasegawa I, Mae K (2014) Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic acid. Ind Eng Chem Res 53:11611–11621CrossRef
go back to reference Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15:5258–5272CrossRef Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15:5258–5272CrossRef
go back to reference Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts Biorefining 5:115–126 Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts Biorefining 5:115–126
go back to reference Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl Catal B 163:487–498CrossRef Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl Catal B 163:487–498CrossRef
go back to reference Ren H, Girisuta B, Zhou Y, Liu L (2015) Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. Carbohyd Polym 117:569–576CrossRef Ren H, Girisuta B, Zhou Y, Liu L (2015) Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. Carbohyd Polym 117:569–576CrossRef
go back to reference Ruiz HA, Rodriguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51CrossRef Ruiz HA, Rodriguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51CrossRef
go back to reference Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R (2015) One-pot synthesis of levulinic acid from cellulose in ionic liquids. Bioresour Technol 192:812–816CrossRef Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R (2015) One-pot synthesis of levulinic acid from cellulose in ionic liquids. Bioresour Technol 192:812–816CrossRef
go back to reference Song D, An S, Sun Y, Guo Y (2016) Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized prganpsilica nanotubes. J Catal 333:184–199CrossRef Song D, An S, Sun Y, Guo Y (2016) Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized prganpsilica nanotubes. J Catal 333:184–199CrossRef
go back to reference Sun Z, Cheng M, Li H, Shi T, Yuan M, Wang X, Jiang Z (2012) One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Adv 2:9058–9065CrossRef Sun Z, Cheng M, Li H, Shi T, Yuan M, Wang X, Jiang Z (2012) One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Adv 2:9058–9065CrossRef
go back to reference Szabolcs A, Molnar M, Dibo G, Mika LT (2013) Microwave-assisted conversion of carbohydrate to levulinic acid: an essential step in biomass conversion. Green Chem 15:439–445CrossRef Szabolcs A, Molnar M, Dibo G, Mika LT (2013) Microwave-assisted conversion of carbohydrate to levulinic acid: an essential step in biomass conversion. Green Chem 15:439–445CrossRef
go back to reference Tilstam U (2012) Sulfolane: a versatile dipolar aprotic solvent. Org Process Res Dev 16:1273–1278CrossRef Tilstam U (2012) Sulfolane: a versatile dipolar aprotic solvent. Org Process Res Dev 16:1273–1278CrossRef
go back to reference Upare PP, Yoon J, Kim M, Kang H, Hwang D, Hwang Y, Kung H, Chang J (2013) Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem 15:2935–2943CrossRef Upare PP, Yoon J, Kim M, Kang H, Hwang D, Hwang Y, Kung H, Chang J (2013) Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem 15:2935–2943CrossRef
go back to reference Van de Vyver S, Geboers J, Helsen S, Yu F, Thomas J, Smet M, Dehaen W, Sels BF (2012) Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly (arylene oxindole)s. Chem Commun 48:3497–3499CrossRef Van de Vyver S, Geboers J, Helsen S, Yu F, Thomas J, Smet M, Dehaen W, Sels BF (2012) Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly (arylene oxindole)s. Chem Commun 48:3497–3499CrossRef
go back to reference Wang K, Jiang J, Xu J, Feng J, Wang J (2016a) Effective sacchrification of holocellulose multifunctional sulfonated char with fused ring structures under microwave irradiation. RSC Adv 6:14164–14170CrossRef Wang K, Jiang J, Xu J, Feng J, Wang J (2016a) Effective sacchrification of holocellulose multifunctional sulfonated char with fused ring structures under microwave irradiation. RSC Adv 6:14164–14170CrossRef
go back to reference Wang K, Xie X, Jiang J, Wang J (2016b) Sulfolane pretreatment of shrub willow to improve enzymatic saccharification. Cellulose 23:1153–1163CrossRef Wang K, Xie X, Jiang J, Wang J (2016b) Sulfolane pretreatment of shrub willow to improve enzymatic saccharification. Cellulose 23:1153–1163CrossRef
go back to reference Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574CrossRef Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574CrossRef
go back to reference Weingarten R, Kim Y, Tompsett GA, Fernandez A, Han K, Hagaman EW, Conner WC Jr, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal (IV) phosphate catalysts. J Catal 304:123–134CrossRef Weingarten R, Kim Y, Tompsett GA, Fernandez A, Han K, Hagaman EW, Conner WC Jr, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal (IV) phosphate catalysts. J Catal 304:123–134CrossRef
go back to reference Wettstein SG, Alonso DM, Chong Y, Dumesic JA (2012) Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energ Environ Sci 5:8199–8203CrossRef Wettstein SG, Alonso DM, Chong Y, Dumesic JA (2012) Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energ Environ Sci 5:8199–8203CrossRef
go back to reference Zuo Y, Zhang Y, Fu Y (2014) Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemcatChem 6:753–757CrossRef Zuo Y, Zhang Y, Fu Y (2014) Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemcatChem 6:753–757CrossRef
Metadata
Title
Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent
Authors
Kui Wang
Jun Ye
Minghao Zhou
Peng Liu
Xinyu Liang
Junming Xu
Jianchun Jiang
Publication date
07-01-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1184-7

Other articles of this Issue 3/2017

Cellulose 3/2017 Go to the issue