Skip to main content
Top
Published in: The Journal of Supercomputing 2/2014

01-05-2014

Selective dynamic serialization for reducing energy consumption in hardware transactional memory systems

Authors: Epifanio Gaona, J. Rubén Titos-Gil, Juan Fernández, Manuel E. Acacio

Published in: The Journal of Supercomputing | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the search for new paradigms to simplify multithreaded programming, Transactional Memory (TM) is currently being advocated as a promising alternative to deadlock-prone lock-based synchronization. In this way, future many-core CMP architectures may need to provide hardware support for TM. On the other hand, power dissipation constitutes a first class consideration in multicore processor designs. In this work, we propose Selective Dynamic Serialization (SDS) as a new technique to improve energy consumption without degrading performance in applications with conflicting transactions by avoiding wasted work due to aborted transactions. Our proposal, which is implemented on top of a hardware transactional memory (HTM) system with an eager conflict management policy, detects and serializes conflicting transactions dynamically (at run-time). In its simplest form, in case of conflict, one transaction is allowed to continue whilst the rest are completely stalled. Once the executing transaction has finished, it wakes up several of the stalling transactions. More elaborated implementations of SDS try to delay this behavior until serialization of transactions is profitable, achieving the best trade-off between performance, energy savings and network traffic. SDS implementations differ from each other in the condition that triggers the serialization mode. We have evaluated several SDS schemes using GEMS, a full-system simulator implementing the LogTM-SE Eager–Eager HTM system, and several benchmarks from the STAMP suite. Results for a 16-core CMP show that SDS obtains reductions of 6 % on average in energy consumption (more than 20 % in high contention scenarios) in a wide range of benchmarks without affecting, on average, execution time. At the same time, network traffic level is also reduced by 22 %.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Our implementation uses the timestamps employed by LogTM-SE as priority mechanism, but any other similar method could be used.
 
2
Note that LogTM_DS would be equivalent to NACK_SDS_0.
 
Literature
1.
go back to reference Borkar S (2007) Thousand core chips: a technology perspective. In: DAC-44 Borkar S (2007) Thousand core chips: a technology perspective. In: DAC-44
2.
go back to reference Diestelhorst S, Pohlack M, Hohmuth M, Christie D, Chung J-W, Yen L (2010) Implementing AMD’s advanced synchronization facility in an out-of-order x86 core. In: Transact-05 Diestelhorst S, Pohlack M, Hohmuth M, Christie D, Chung J-W, Yen L (2010) Implementing AMD’s advanced synchronization facility in an out-of-order x86 core. In: Transact-05
3.
go back to reference Dice D, Lev Y, Moir M, Nussbaum D (2009) Early experience with a commercial hardware transactional memory implementation. In: ASPLOS-14 Dice D, Lev Y, Moir M, Nussbaum D (2009) Early experience with a commercial hardware transactional memory implementation. In: ASPLOS-14
4.
go back to reference The IBM Blue Gene Team (2011) The Blue Gene/Q compute chip. In: Hot Chips 23 The IBM Blue Gene Team (2011) The Blue Gene/Q compute chip. In: Hot Chips 23
5.
go back to reference Kanter D (2012) Analysis of Haswell’s transactional memory. In: Real World Technologies (02–15-2012) Kanter D (2012) Analysis of Haswell’s transactional memory. In: Real World Technologies (02–15-2012)
6.
go back to reference Herlihy M, Eliot J, Moss B (1993) Transactional memory: architectural support for lock-free data structures. In: ISCA-20 Herlihy M, Eliot J, Moss B (1993) Transactional memory: architectural support for lock-free data structures. In: ISCA-20
7.
go back to reference Harris T, Cristal A, Unsal OS, Ayguad E, Gagliardi F, Smith B, Valero M (2007) Transactional memory: an overview. IEEE Micro 27(3):8–29CrossRef Harris T, Cristal A, Unsal OS, Ayguad E, Gagliardi F, Smith B, Valero M (2007) Transactional memory: an overview. IEEE Micro 27(3):8–29CrossRef
8.
go back to reference Ferri C, Wood S, Moreshet T, Bahar RI, Herlihy M (2010) Embedded-TM: energy and complexity-effective hardware transactional memory for embedded multicore systems. J Parallel Distrib Comput (JPDC) 70(10):1042–1052 Ferri C, Wood S, Moreshet T, Bahar RI, Herlihy M (2010) Embedded-TM: energy and complexity-effective hardware transactional memory for embedded multicore systems. J Parallel Distrib Comput (JPDC) 70(10):1042–1052
9.
go back to reference Ferri C, Wood S, Moreshet T, Bahar RI, Herlihy M (2010) Energy and throughput efficient transactional memory for embedded multicore systems. In: HiPEAC, pp 50–65 Ferri C, Wood S, Moreshet T, Bahar RI, Herlihy M (2010) Energy and throughput efficient transactional memory for embedded multicore systems. In: HiPEAC, pp 50–65
10.
go back to reference Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40(12):33–37CrossRef Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40(12):33–37CrossRef
11.
go back to reference Ceze L, Tuck J, Torrellas J, Cascaval C (2006) Bulk disambiguation of speculative threads in multiprocessors. In: ISCA-33 Ceze L, Tuck J, Torrellas J, Cascaval C (2006) Bulk disambiguation of speculative threads in multiprocessors. In: ISCA-33
12.
go back to reference Shriraman A, Dwarkadas S, Scott ML (2008) Flexible decoupled transactional memory support. In: ISCA-35 Shriraman A, Dwarkadas S, Scott ML (2008) Flexible decoupled transactional memory support. In: ISCA-35
13.
go back to reference Gaona-Ramírez E, Titos-Gil JR, Fernández J, Acacio ME (2013) On the design of energy-efficient hardware transactional memory systems. Concurr Comput Pract Exp 25(6):862–880 Gaona-Ramírez E, Titos-Gil JR, Fernández J, Acacio ME (2013) On the design of energy-efficient hardware transactional memory systems. Concurr Comput Pract Exp 25(6):862–880
14.
go back to reference Yen L, Bobba J, Marty MR, Moore KE, Volos H, Hill MD, Swift MM, Wood DA (2007) LogTM-SE: decoupling hardware transactional memory from caches. In: HPCA-13 Yen L, Bobba J, Marty MR, Moore KE, Volos H, Hill MD, Swift MM, Wood DA (2007) LogTM-SE: decoupling hardware transactional memory from caches. In: HPCA-13
15.
go back to reference Minh CC, Chung J, Kozyrakis C, Olukotun K (2008) STAMP: stanford transactional applications for multi-processing. In: IISWC-4 Minh CC, Chung J, Kozyrakis C, Olukotun K (2008) STAMP: stanford transactional applications for multi-processing. In: IISWC-4
16.
go back to reference Gaona-Ramírez E, Titos-Gil JR, Acacio ME, Fernández J (2012) Dynamic serialization: Improving energy consumption in eager–eager hardware transactional memory systems. In: PDP-20, pp 221–228 Gaona-Ramírez E, Titos-Gil JR, Acacio ME, Fernández J (2012) Dynamic serialization: Improving energy consumption in eager–eager hardware transactional memory systems. In: PDP-20, pp 221–228
17.
go back to reference Moreshet T, Bahar RI, Herlihy M (2006) Energy-aware microprocessor synchronization: transactional memory vs. locks. In: Workshop on memory performance, Issues Moreshet T, Bahar RI, Herlihy M (2006) Energy-aware microprocessor synchronization: transactional memory vs. locks. In: Workshop on memory performance, Issues
18.
go back to reference Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD, Wood DA (2005) Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH CAN 33(4):92–99 Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD, Wood DA (2005) Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH CAN 33(4):92–99
19.
go back to reference Kahng AB, Li B, Peh L-S, Samadi K (2009) ORION 2.0: a fast and accurate NoC power and area model for early-stage design space exploration. In: DATE-13 Kahng AB, Li B, Peh L-S, Samadi K (2009) ORION 2.0: a fast and accurate NoC power and area model for early-stage design space exploration. In: DATE-13
20.
go back to reference Thoziyoor S, Muralimanohar N, Ahn JH, Jouppi NP (2008) Cacti 5.1. Technical Report HPL-2008–20. HP Laboratories, Palo Alto, CA Thoziyoor S, Muralimanohar N, Ahn JH, Jouppi NP (2008) Cacti 5.1. Technical Report HPL-2008–20. HP Laboratories, Palo Alto, CA
21.
go back to reference Dragojevic A, Guerraoui R (2010) Predicting the scalability of an STM. In: Transact-05 Dragojevic A, Guerraoui R (2010) Predicting the scalability of an STM. In: Transact-05
22.
go back to reference Harris T, Larus J, Rajwar R (2010) Transactional memory, 2nd edn. Morgan & Claypool, San Rafael Harris T, Larus J, Rajwar R (2010) Transactional memory, 2nd edn. Morgan & Claypool, San Rafael
23.
go back to reference Dice D, Shalev O, Shavit N (2006) Transactional locking II. In: DISC-20 Dice D, Shalev O, Shavit N (2006) Transactional locking II. In: DISC-20
24.
go back to reference Fraser K, Harris TL (2007) Concurrent programming without locks. ACM TOCS 25(2):1–61 Fraser K, Harris TL (2007) Concurrent programming without locks. ACM TOCS 25(2):1–61
25.
go back to reference Marathe VJ, Scherer-III WN, Scott ML (2005) Adaptive software transactional memory. In: DISC-19 Marathe VJ, Scherer-III WN, Scott ML (2005) Adaptive software transactional memory. In: DISC-19
26.
go back to reference Herlihy M, Luchangco V, Moir M, Scherer-III WN (2003) Software transactional memory for dynamic-sized data structures. In: PODC-22 Herlihy M, Luchangco V, Moir M, Scherer-III WN (2003) Software transactional memory for dynamic-sized data structures. In: PODC-22
27.
go back to reference Saha B, Adl-tabatabai A, Hudson RL, Minh CC, Hertzberg B (2006) McRT-STM: a high performance software transactional memory system for a multi-core runtime. In: PPoPP-11 Saha B, Adl-tabatabai A, Hudson RL, Minh CC, Hertzberg B (2006) McRT-STM: a high performance software transactional memory system for a multi-core runtime. In: PPoPP-11
28.
go back to reference Tomic S, Perfumo C, Kulkarni CE, Armejach A, Cristal A, Unsal OS, Harris T, Valero M (2009) EazyHTM: eager-lazy hardware transactional memory. In: MICRO-42 Tomic S, Perfumo C, Kulkarni CE, Armejach A, Cristal A, Unsal OS, Harris T, Valero M (2009) EazyHTM: eager-lazy hardware transactional memory. In: MICRO-42
29.
go back to reference Rajwar R, Herlihy M, Lai KK (2005) Virtualizing transactional memory. In: ISCA-32 Rajwar R, Herlihy M, Lai KK (2005) Virtualizing transactional memory. In: ISCA-32
30.
go back to reference Damron P, Fedorova A, Lev Y, Luchangco V, Moir M, Nussbaum D (2006) Hybrid transactional memory. In: ASPLOS-XII, pp 336–346 Damron P, Fedorova A, Lev Y, Luchangco V, Moir M, Nussbaum D (2006) Hybrid transactional memory. In: ASPLOS-XII, pp 336–346
31.
go back to reference Flores A, Aragón JL, Acacio ME (2008) An energy consumption characterization of on-chip interconnection networks for tiled cmp architectures. J Supercomput 45(3):341–364CrossRef Flores A, Aragón JL, Acacio ME (2008) An energy consumption characterization of on-chip interconnection networks for tiled cmp architectures. J Supercomput 45(3):341–364CrossRef
32.
go back to reference Lupon M, Magklis G, González A (2010) A dynamically adaptable hardware transactional memory. In: MICRO-43, pp 27–38 Lupon M, Magklis G, González A (2010) A dynamically adaptable hardware transactional memory. In: MICRO-43, pp 27–38
33.
go back to reference Negi A, Titos-Gil JR, Acacio ME, García JM, Stenström P (2011) ZEBRA: a data-centric, hybrid-policy hardware transactional memory design. In: ICS-25 Negi A, Titos-Gil JR, Acacio ME, García JM, Stenström P (2011) ZEBRA: a data-centric, hybrid-policy hardware transactional memory design. In: ICS-25
34.
go back to reference Negi A, Titos-Gil JR, Acacio ME, García JM, Stenström P (2012) PI-TM: pessimistic invalidation for scalable lazy hardware transactional memory. In: HPCA-18, pp 141–152 Negi A, Titos-Gil JR, Acacio ME, García JM, Stenström P (2012) PI-TM: pessimistic invalidation for scalable lazy hardware transactional memory. In: HPCA-18, pp 141–152
35.
go back to reference Titos-Gil JR, Negi A, Acacio ME, García JM, Stenström P (2013) Eager beats lazy: improving store management in eager hardware transactional memory. IEEE Trans Parallel Distrib Syst 24(11):2192–2201CrossRef Titos-Gil JR, Negi A, Acacio ME, García JM, Stenström P (2013) Eager beats lazy: improving store management in eager hardware transactional memory. IEEE Trans Parallel Distrib Syst 24(11):2192–2201CrossRef
36.
go back to reference Shriraman A, Dwarkadas S, Scott ML (2010) Implementation tradeoffs in the design of flexible transactional memory support. J Parallel Distrib Comput 70(10):1068–1084CrossRefMATH Shriraman A, Dwarkadas S, Scott ML (2010) Implementation tradeoffs in the design of flexible transactional memory support. J Parallel Distrib Comput 70(10):1068–1084CrossRefMATH
37.
go back to reference Klein F, Baldassin A, Araujo G, Centoducatte P, Azevedo R (2009) On the energy-efficiency of software transactional memory. In: SBCCI-22 Klein F, Baldassin A, Araujo G, Centoducatte P, Azevedo R (2009) On the energy-efficiency of software transactional memory. In: SBCCI-22
38.
go back to reference Sanyal S, Roy S, Cristal A, Unsal O, Valero M (2009) Clock gate on abort: towards energy-efficient hardware transactional memory. In: HPPAC-2009 Sanyal S, Roy S, Cristal A, Unsal O, Valero M (2009) Clock gate on abort: towards energy-efficient hardware transactional memory. In: HPPAC-2009
39.
go back to reference Chafi H, Casper J, Carlstrom BD, McDonald A, Minh CC, Baek W, Kozyrakis C, Olukotun K (2007) A scalable, non-blocking approach to transactional memory. In: HPCA-13 Chafi H, Casper J, Carlstrom BD, McDonald A, Minh CC, Baek W, Kozyrakis C, Olukotun K (2007) A scalable, non-blocking approach to transactional memory. In: HPCA-13
40.
go back to reference Pugsley SH, Awasthi M, Madan N, Muralimanohar N, Balasubramonian R (2008) Scalable and reliable communication for hardware transactional memory. In: PACT-17 Pugsley SH, Awasthi M, Madan N, Muralimanohar N, Balasubramonian R (2008) Scalable and reliable communication for hardware transactional memory. In: PACT-17
41.
go back to reference Cristal A, Unsal O, Yalcin G, Fetzer C, Wamhoff J-T, Felber P, Harmanci D (2013) A. Sobe, Leveraging transactional memory for energy-efficient computing below safe operation margin. In: TRANSACT-2013 Cristal A, Unsal O, Yalcin G, Fetzer C, Wamhoff J-T, Felber P, Harmanci D (2013) A. Sobe, Leveraging transactional memory for energy-efficient computing below safe operation margin. In: TRANSACT-2013
Metadata
Title
Selective dynamic serialization for reducing energy consumption in hardware transactional memory systems
Authors
Epifanio Gaona
J. Rubén Titos-Gil
Juan Fernández
Manuel E. Acacio
Publication date
01-05-2014
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 2/2014
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-013-1072-y

Other articles of this Issue 2/2014

The Journal of Supercomputing 2/2014 Go to the issue

Premium Partner