Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Selective Hydrogenation of Carbon Dioxide into Methanol

Authors : Doan Pham Minh, Anne-Cécile Roger, Ksenia Parkhomenko, Valentin L’Hospital, Bruna Rego de Vasconcelos, Kyoung Ro, Devinder Mahajan, Lyufei Chen, Sharanjit Singh, Dai-Viet N. Vo

Published in: Conversion of Carbon Dioxide into Hydrocarbons Vol. 2 Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is dedicated to methanol synthesis from carbon dioxide and hydrogen. Methanol, chemical formula CH3OH, is an important platform molecule which can be transformed into a large number of other chemicals, i.e., formaldehyde, acetic acid, dimethyl ether, methyl tert-butyl ether, and methyl methacrylate, as well as complex hydrocarbon mixtures, e.g., gasoline and diesel. Up to date, methanol is produced at industrial scale by steam reforming of natural gas, leading to high environmental impacts. The selective hydrogenation of carbon dioxide into methanol can be a good alternative since it is possible to capture carbon dioxide from industrial processes and to produce hydrogen from renewable energies, e.g., solar energy and wind energy.
From a thermodynamic point of view, carbon dioxide hydrogenation is strongly influenced by the total pressure, temperature, and feeding composition. The use of a catalyst is also mandatory to control the kinetic and the selectivity into methanol. Among solid catalysts studied, copper-based catalysts have been found to be the best catalytic systems. Promoters like zinc oxide were usually used. Nickel-, palladium-, and silver-based catalysts also showed good catalytic performance compared to copper-based catalysts. Soluble catalysts have been intensively studied for this hydrogenation. Ru complexes appeared as the best homogeneous catalyst. Other metal-free homogeneous catalysts, e.g., N-heterocyclic carbenes, have been found to be active and selective in this reaction. Efforts have been made on the mechanistic study of the reaction in both the gas and liquid phases. Large industrial production has started in several countries showing the interest and the feasibility of the process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117(14):9804–9838CrossRef Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117(14):9804–9838CrossRef
go back to reference Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551. https://doi.org/10.1021/ja1023496CrossRef Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551. https://​doi.​org/​10.​1021/​ja1023496CrossRef
go back to reference Behrens M, Brennecke D, Girgsdies F, Kißner S, Trunschke A, Nasrudin N, Zakaria S, Idris NF, Hamid SBA, Kniep B, Fischer R, Busser W, Muhler M, Schlögl R (2011) Understanding the complexity of a catalyst synthesis: co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Appl Catal A Gen 392(1–2):93–102. https://doi.org/10.1016/j.apcata.2010.10.031CrossRef Behrens M, Brennecke D, Girgsdies F, Kißner S, Trunschke A, Nasrudin N, Zakaria S, Idris NF, Hamid SBA, Kniep B, Fischer R, Busser W, Muhler M, Schlögl R (2011) Understanding the complexity of a catalyst synthesis: co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Appl Catal A Gen 392(1–2):93–102. https://​doi.​org/​10.​1016/​j.​apcata.​2010.​10.​031CrossRef
go back to reference Cheng WH, Kung HH (1994) Methanol production and use. Marcel Dekker, New York Cheng WH, Kung HH (1994) Methanol production and use. Marcel Dekker, New York
go back to reference Gent AEA (1976) Methanol production, US patent 3950369 Gent AEA (1976) Methanol production, US patent 3950369
go back to reference Kim L, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C (2017) Carbon dioxide hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal – support interface. Angew Chem Int Ed 56:2318–2323. https://doi.org/10.1002/anie.201610166CrossRef Kim L, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C (2017) Carbon dioxide hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal – support interface. Angew Chem Int Ed 56:2318–2323. https://​doi.​org/​10.​1002/​anie.​201610166CrossRef
go back to reference L’Hospital V (2018) Développement et optimisation de catalyseurs à base de cuivre pour la synthèse de méthanol et de diméthyléther à partir de CO2, PhD thesis, University of Strasbourg L’Hospital V (2018) Développement et optimisation de catalyseurs à base de cuivre pour la synthèse de méthanol et de diméthyléther à partir de CO2, PhD thesis, University of Strasbourg
go back to reference L’Hospital V, Angelo L, Zimmermann Y, Parkhomenko K, Roger AC (2019) Effect of the Zn/Zr ratio in the support of a copper-based catalyst for the methanol synthesis from CO2, submitted to Appl Catal A: Gen L’Hospital V, Angelo L, Zimmermann Y, Parkhomenko K, Roger AC (2019) Effect of the Zn/Zr ratio in the support of a copper-based catalyst for the methanol synthesis from CO2, submitted to Appl Catal A: Gen
go back to reference Lee S (1990) Methanol synthesis technology. CRC Press, Boca Raton Lee S (1990) Methanol synthesis technology. CRC Press, Boca Raton
go back to reference Lide DR (2003–2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton Lide DR (2003–2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton
go back to reference Olah GA, Goeppert A, Surya Prakash GK (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498. https://doi.org/10.1021/jo801260fCrossRef Olah GA, Goeppert A, Surya Prakash GK (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498. https://​doi.​org/​10.​1021/​jo801260fCrossRef
go back to reference Pham MD, Siang TJ, Vo D-VN, Phan TS, Ridart C, Nzihou A, Grouset D (2018) Chapter 4: hydrogen production from biogas reforming: an overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane. In: Azzaro-Pantel C (ed) Hydrogen supply chain: design, deployment and operation. Academic Press, pp 111–166. https://doi.org/10.1016/B978-0-12-811197-0.00004-XCrossRef Pham MD, Siang TJ, Vo D-VN, Phan TS, Ridart C, Nzihou A, Grouset D (2018) Chapter 4: hydrogen production from biogas reforming: an overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane. In: Azzaro-Pantel C (ed) Hydrogen supply chain: design, deployment and operation. Academic Press, pp 111–166. https://​doi.​org/​10.​1016/​B978-0-12-811197-0.​00004-XCrossRef
go back to reference Van den Bussche KM, Froment GF (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 10:1–10CrossRef Van den Bussche KM, Froment GF (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 10:1–10CrossRef
go back to reference Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas AA, Wood TE, Li H, Loh JYY, Dong Y, Xia M, Li Y, Wang S, Jia J, Qiu C, Qian C, Kherani NP, He L, Zhang X, Ozin GA (2018) Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2(7):1369–1381. https://doi.org/10.1016/j.joule.2018.03.007CrossRef Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas AA, Wood TE, Li H, Loh JYY, Dong Y, Xia M, Li Y, Wang S, Jia J, Qiu C, Qian C, Kherani NP, He L, Zhang X, Ozin GA (2018) Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2(7):1369–1381. https://​doi.​org/​10.​1016/​j.​joule.​2018.​03.​007CrossRef
go back to reference Wesselbaum S, Moha V, Meuresch M, Brosinski S, Thenert KM, Kothe J, vom Stein T, Englert U, Hölscher M, Klankermayer J, Leitner W (2015) Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis. Chem Sci 6(1):693–704. https://doi.org/10.1039/c4sc02087aCrossRef Wesselbaum S, Moha V, Meuresch M, Brosinski S, Thenert KM, Kothe J, vom Stein T, Englert U, Hölscher M, Klankermayer J, Leitner W (2015) Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis. Chem Sci 6(1):693–704. https://​doi.​org/​10.​1039/​c4sc02087aCrossRef
Metadata
Title
Selective Hydrogenation of Carbon Dioxide into Methanol
Authors
Doan Pham Minh
Anne-Cécile Roger
Ksenia Parkhomenko
Valentin L’Hospital
Bruna Rego de Vasconcelos
Kyoung Ro
Devinder Mahajan
Lyufei Chen
Sharanjit Singh
Dai-Viet N. Vo
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28638-5_5