Skip to main content
Top
Published in: Journal of Electronic Materials 12/2023

11-10-2023 | Original Research Article

Self-Healing of Defect-Mediated Disorder in ZnO Thin Films Grown by Atomic Layer Deposition

Authors: Don P. Benny, Vikas Munya, Arpan Ghosh, Ravinder Kumar, Dipayan Pal, Herbert Pfnür, Sudeshna Chattopadhyay

Published in: Journal of Electronic Materials | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electronics with semiconductors rely strongly on defect concentrations and on the properties of these defects. Here we study ZnO thin films which were grown by atomic layer deposition. An interesting mechanism of build-up and of self-healing of Zn interstitial defects as a function of layer thickness d was found, based on measurements of photoabsorption (PA), photoluminescence (PL) and x-ray diffraction as a function of d. The concentration of Zn interstitial defects increases up to d = 19 nm, coupled with a corresponding increase of the Urbach energy, Eu, in PA. At this layer thickness, the growth mode changes from the formation of a homogeneous layer to a layer of nano-crystals, where the nano-crystals grow in size with d. Surprisingly, the Zn interstitial concentration decreases spontaneously once the layer thickness exceeds d = 38 nm. We explain this behavior by a reduction of diffusion barriers for Zn interstitials as a function of average ZnO particle size leading to spontaneous diffusion to the particle surface and subsequent oxidation therein. At the same time, the concentration of oxygen vacancies, mostly located at the particle surface, is greatly reduced with increasing film thickness. The study is of importance in designing opto- and nano-electronic devices by means of appropriate selection of ZnO film thickness, for targeted quality, property and further practical applications.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference B.D. Aleksandra and H.L. Yu, Optical properties of ZnO nanostructures. Small 2, 944 (2006).CrossRef B.D. Aleksandra and H.L. Yu, Optical properties of ZnO nanostructures. Small 2, 944 (2006).CrossRef
2.
go back to reference Z. Branković, G. Branković, D. Poleti, and J.A. Varela, Structural and electrical properties of ZnO varistors containing different spinel phases. Ceram. Int. 27, 115 (2001).CrossRef Z. Branković, G. Branković, D. Poleti, and J.A. Varela, Structural and electrical properties of ZnO varistors containing different spinel phases. Ceram. Int. 27, 115 (2001).CrossRef
3.
go back to reference K.M. Sandeep, S. Bhat, and S.M. Dharmaprakash, Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films. J. Phys. Chem. Solids 104, 36 (2017).CrossRef K.M. Sandeep, S. Bhat, and S.M. Dharmaprakash, Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films. J. Phys. Chem. Solids 104, 36 (2017).CrossRef
4.
go back to reference L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A 267, 242 (2017).CrossRef L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A 267, 242 (2017).CrossRef
5.
go back to reference K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, and H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A 148, 57 (2002).CrossRef K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, and H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A 148, 57 (2002).CrossRef
6.
go back to reference J. Pilz, A. Perrotta, P. Christian, M. Tazreiter, R. Resel, and G. Leising, Thomas griesser and anna maria coclite. Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature. J. Vac. Sci. Technol. A 36, 01A109 (2017).CrossRef J. Pilz, A. Perrotta, P. Christian, M. Tazreiter, R. Resel, and G. Leising, Thomas griesser and anna maria coclite. Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature. J. Vac. Sci. Technol. A 36, 01A109 (2017).CrossRef
7.
go back to reference N.O.V. Plank, M.E. Welland, J.L. MacManus-Driscoll, and L. Schmidt-Mende, The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells. Thin Solid Films 516, 7218 (2008).CrossRef N.O.V. Plank, M.E. Welland, J.L. MacManus-Driscoll, and L. Schmidt-Mende, The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells. Thin Solid Films 516, 7218 (2008).CrossRef
8.
go back to reference B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D. Jason Riley, and M.P. Ryan, Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation. J. Mater. Chem. 21, 12949 (2011).CrossRef B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D. Jason Riley, and M.P. Ryan, Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation. J. Mater. Chem. 21, 12949 (2011).CrossRef
9.
go back to reference J. Bourgoin, Point defects in Semiconductors II: Experimental aspects (Berlin: Springer Science & Business Media, 2012). J. Bourgoin, Point defects in Semiconductors II: Experimental aspects (Berlin: Springer Science & Business Media, 2012).
10.
go back to reference A. Janotti and C.G. Van de Walle, Native point defects in ZnO. Phy. Rev. B 76, 165202 (2007).CrossRef A. Janotti and C.G. Van de Walle, Native point defects in ZnO. Phy. Rev. B 76, 165202 (2007).CrossRef
11.
go back to reference A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, First-principles study of native point defects in ZnO. Phy. Rev. B 61, 15019 (2000).CrossRef A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, First-principles study of native point defects in ZnO. Phy. Rev. B 61, 15019 (2000).CrossRef
12.
go back to reference M. Lannoo, Point defects in semiconductors I: theoretical aspects (Berlin: Springer Science & Business Media, 2012). M. Lannoo, Point defects in semiconductors I: theoretical aspects (Berlin: Springer Science & Business Media, 2012).
13.
go back to reference G.M. Martin, S. Makram-Ebeid, ST %J Gordon Pantelides and New York Breach. Deep Centers in Semiconductors: a state of the art approach. (1986). G.M. Martin, S. Makram-Ebeid, ST %J Gordon Pantelides and New York Breach. Deep Centers in Semiconductors: a state of the art approach. (1986).
14.
go back to reference R.K. Willardson and R. Eicke, Weber and Michael Stavola: Identification of Defects in Semiconductors (Cambridge: Academic Press, 1998). R.K. Willardson and R. Eicke, Weber and Michael Stavola: Identification of Defects in Semiconductors (Cambridge: Academic Press, 1998).
15.
go back to reference J. Panigrahi, P.K. Singh, and G. Gupta, Growth and luminescence characteristics of zinc oxide thin films deposited by ALD technique. J. Lumin. 233, 117797 (2021).CrossRef J. Panigrahi, P.K. Singh, and G. Gupta, Growth and luminescence characteristics of zinc oxide thin films deposited by ALD technique. J. Lumin. 233, 117797 (2021).CrossRef
16.
go back to reference T. Tynell and M. Karppinen, Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014).CrossRef T. Tynell and M. Karppinen, Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014).CrossRef
17.
go back to reference R.C. Rai, Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films. J. Appl. Phys. 113, 153508 (2013).CrossRef R.C. Rai, Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films. J. Appl. Phys. 113, 153508 (2013).CrossRef
18.
go back to reference B.P. Zhang, C.Y. Liu, Y. Segawa, Y. Kashiwaba, and K. Haga, Free excitonic transition of zinc oxide nanocrystallite films formed on amorphous substrates by metalorganic chemical vapor deposition. Thin Solid Films 474, 165 (2005).CrossRef B.P. Zhang, C.Y. Liu, Y. Segawa, Y. Kashiwaba, and K. Haga, Free excitonic transition of zinc oxide nanocrystallite films formed on amorphous substrates by metalorganic chemical vapor deposition. Thin Solid Films 474, 165 (2005).CrossRef
19.
go back to reference C.W. Teng, J.F. Muth, Ü. Özgür, M.J. Bergmann, H.O. Everitt, A.K. Sharma, C. Jin, and J. Narayan, Refractive indices and absorption coefficients of MgxZn1−xO alloys. Appl. Phys. Lett. 76, 979 (2000).CrossRef C.W. Teng, J.F. Muth, Ü. Özgür, M.J. Bergmann, H.O. Everitt, A.K. Sharma, C. Jin, and J. Narayan, Refractive indices and absorption coefficients of MgxZn1−xO alloys. Appl. Phys. Lett. 76, 979 (2000).CrossRef
20.
go back to reference V. Srikant and D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998).CrossRef V. Srikant and D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998).CrossRef
21.
go back to reference J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, and J. Narayan, Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J. Appl. Phys. 85, 7884 (1999).CrossRef J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, and J. Narayan, Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J. Appl. Phys. 85, 7884 (1999).CrossRef
22.
go back to reference G. Hvedstrup Jensen and T. Skettrup, Absorption edge and urbach’s rule in ZnO. Physica Status Solidi (b) 60, 169 (1973).CrossRef G. Hvedstrup Jensen and T. Skettrup, Absorption edge and urbach’s rule in ZnO. Physica Status Solidi (b) 60, 169 (1973).CrossRef
23.
go back to reference J.C. Nie, J.Y. Yang, Y. Piao, H. Li, Y. Sun, Q.M. Xue, C.M. Xiong, R.F. Dou, and Q.Y. Tu, Quantum confinement effect in ZnO thin films grown by pulsed laser deposition. Appl. Phys. Lett. 93, 173104 (2008).CrossRef J.C. Nie, J.Y. Yang, Y. Piao, H. Li, Y. Sun, Q.M. Xue, C.M. Xiong, R.F. Dou, and Q.Y. Tu, Quantum confinement effect in ZnO thin films grown by pulsed laser deposition. Appl. Phys. Lett. 93, 173104 (2008).CrossRef
24.
go back to reference A.A. Mosquera, D. Horwat, A. Rashkovskiy, A. Kovalev, P. Miska, D. Wainstein, J.M. Albella, and J.L. Endrino, Exciton and core-level electron confinement effects in transparent ZnO thin films. Sci. Rep. 3, 1714 (2013).CrossRef A.A. Mosquera, D. Horwat, A. Rashkovskiy, A. Kovalev, P. Miska, D. Wainstein, J.M. Albella, and J.L. Endrino, Exciton and core-level electron confinement effects in transparent ZnO thin films. Sci. Rep. 3, 1714 (2013).CrossRef
25.
go back to reference X.D. Li, T.P. Chen, P. Liu, Y. Liu, Z. Liu, and K.C. Leong, A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness. J. Appl. Phys. 115, 103512 (2014).CrossRef X.D. Li, T.P. Chen, P. Liu, Y. Liu, Z. Liu, and K.C. Leong, A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness. J. Appl. Phys. 115, 103512 (2014).CrossRef
26.
go back to reference S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010).CrossRef S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010).CrossRef
27.
go back to reference E.B. Yousfi, J. Fouache, and D. Lincot, Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry. Appl. Surf. Sci. 53, 223 (2000).CrossRef E.B. Yousfi, J. Fouache, and D. Lincot, Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry. Appl. Surf. Sci. 53, 223 (2000).CrossRef
28.
go back to reference Z. Baji, Z. Lábadi, Z.E. Horváth, G. Molnár, J. Volk, I. Bársony, and P. Barna, Nucleation and growth modes of ALD ZnO. Cryst. Growth Des. 12, 5615 (2012).CrossRef Z. Baji, Z. Lábadi, Z.E. Horváth, G. Molnár, J. Volk, I. Bársony, and P. Barna, Nucleation and growth modes of ALD ZnO. Cryst. Growth Des. 12, 5615 (2012).CrossRef
29.
go back to reference S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H.J. Chang, and H.H. Park, Structural and electrical properties of ZnO thin films deposited by atomic layer deposition at low temperatures. J. Electrochem. Soc. 155, H738 (2008).CrossRef S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H.J. Chang, and H.H. Park, Structural and electrical properties of ZnO thin films deposited by atomic layer deposition at low temperatures. J. Electrochem. Soc. 155, H738 (2008).CrossRef
30.
go back to reference Z. Baji, Z. Lábadi, Z.E. Horváth, M. Fried, B. Szentpáli, and I. Bársony, Temperature dependent in situ doping of ALD ZnO. J. Therm. Anal. Calorim. 105, 93 (2011).CrossRef Z. Baji, Z. Lábadi, Z.E. Horváth, M. Fried, B. Szentpáli, and I. Bársony, Temperature dependent in situ doping of ALD ZnO. J. Therm. Anal. Calorim. 105, 93 (2011).CrossRef
31.
go back to reference J. Hämäläinen, M. Ritala, and M. Leskelä, Atomic layer deposition of noble metals and their oxides. Chem. Mater. 26, 786 (2014).CrossRef J. Hämäläinen, M. Ritala, and M. Leskelä, Atomic layer deposition of noble metals and their oxides. Chem. Mater. 26, 786 (2014).CrossRef
32.
go back to reference M. Mattinen, J. Hämäläinen, F. Gao, P. Jalkanen, K. Mizohata, J. Räisänen, R.L. Puurunen, M. Ritala, and M. Leskelä, Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer deposition. Langmuir 32, 10559 (2016).CrossRef M. Mattinen, J. Hämäläinen, F. Gao, P. Jalkanen, K. Mizohata, J. Räisänen, R.L. Puurunen, M. Ritala, and M. Leskelä, Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer deposition. Langmuir 32, 10559 (2016).CrossRef
33.
go back to reference D. Pal, A. Mathur, A. Singh, J. Singhal, A. Sengupta, S. Dutta, S. Zollner, and S. Chattopadhyay, Tunable optical properties in atomic layer deposition grown ZnO thin films. J. Vac. Sci. Technol. A 35, 01B108 (2016).CrossRef D. Pal, A. Mathur, A. Singh, J. Singhal, A. Sengupta, S. Dutta, S. Zollner, and S. Chattopadhyay, Tunable optical properties in atomic layer deposition grown ZnO thin films. J. Vac. Sci. Technol. A 35, 01B108 (2016).CrossRef
34.
go back to reference N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013).CrossRef N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013).CrossRef
35.
go back to reference S.M. Wasim, G. Marı́n, C. Rincón, and G. Sánchez Pérez, Urbach–martienssen’s tail in the absorption spectra of the ordered vacancy compound CuIn3Se5. J. Appl. Phys. 84, 5823 (1998).CrossRef S.M. Wasim, G. Marı́n, C. Rincón, and G. Sánchez Pérez, Urbach–martienssen’s tail in the absorption spectra of the ordered vacancy compound CuIn3Se5. J. Appl. Phys. 84, 5823 (1998).CrossRef
36.
go back to reference F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).CrossRef F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).CrossRef
37.
go back to reference J.D. Dow and D. Redfield, Toward a unified theory of urbach’s rule and exponential absorption edges. Phys. Rev. B 5, 594 (1972).CrossRef J.D. Dow and D. Redfield, Toward a unified theory of urbach’s rule and exponential absorption edges. Phys. Rev. B 5, 594 (1972).CrossRef
38.
go back to reference G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480 (1981).CrossRef G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480 (1981).CrossRef
39.
go back to reference S. Benramache, O. Belahssen, A. Guettaf, and A. Arif, Correlation between electrical conductivity—optical band gap energy and precursor molarities ultrasonic spray deposition of ZnO thin films. J. Semicond. 34, 113001 (2013).CrossRef S. Benramache, O. Belahssen, A. Guettaf, and A. Arif, Correlation between electrical conductivity—optical band gap energy and precursor molarities ultrasonic spray deposition of ZnO thin films. J. Semicond. 34, 113001 (2013).CrossRef
40.
go back to reference M. Yilmaz, Characteristic properties of spin coated ZnO thin films: the effect of Ni doping. Phys. Scr. 89, 095802 (2014).CrossRef M. Yilmaz, Characteristic properties of spin coated ZnO thin films: the effect of Ni doping. Phys. Scr. 89, 095802 (2014).CrossRef
41.
go back to reference J. Tauc, Amorphous and liquid semiconductors (Berlin: Springer Science & Business Media, 2012). J. Tauc, Amorphous and liquid semiconductors (Berlin: Springer Science & Business Media, 2012).
42.
go back to reference S. Yang, X. Tian, L. Wang, J. Wei, K. Qi, X. Li, Xu. Zhi, W. Wang, J. Zhao, X. Bai, and E. Wang, In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence. Appl. Phys. Lett. 105, 071901 (2014).CrossRef S. Yang, X. Tian, L. Wang, J. Wei, K. Qi, X. Li, Xu. Zhi, W. Wang, J. Zhao, X. Bai, and E. Wang, In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence. Appl. Phys. Lett. 105, 071901 (2014).CrossRef
43.
go back to reference T. Singh, T. Lehnen, T. Leuning, D. Sahu, and S. Mathur, Thickness dependence of optoelectronic properties in ALD grown ZnO thin films. Appl. Surf. Sci. 289, 27 (2014).CrossRef T. Singh, T. Lehnen, T. Leuning, D. Sahu, and S. Mathur, Thickness dependence of optoelectronic properties in ALD grown ZnO thin films. Appl. Surf. Sci. 289, 27 (2014).CrossRef
44.
go back to reference W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, and J.J. Song, Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 86, 191911 (2005).CrossRef W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, and J.J. Song, Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 86, 191911 (2005).CrossRef
45.
go back to reference A. Mathur, D. Pal, A. Singh, A. Sengupta, R. Singh, and S. Chattopadhyay, Violet emission of ALD-Grown ZnO nanostructures on confined polymer films: defect origins and emission control via interface engineering based on confinement of the bottom polymer template. Macromol. Chem. Phys. 220, 1800435 (2019).CrossRef A. Mathur, D. Pal, A. Singh, A. Sengupta, R. Singh, and S. Chattopadhyay, Violet emission of ALD-Grown ZnO nanostructures on confined polymer films: defect origins and emission control via interface engineering based on confinement of the bottom polymer template. Macromol. Chem. Phys. 220, 1800435 (2019).CrossRef
46.
go back to reference D.A. Lucca, D.W. Hamby, M.J. Klopfstein, and G. Cantwell, Chemomechanical polishing effects on the room temperature photoluminescence of bulk ZnO: Exciton–LO phonon. Interact. Physica Status Solidi (b) 229, 845 (2002).CrossRef D.A. Lucca, D.W. Hamby, M.J. Klopfstein, and G. Cantwell, Chemomechanical polishing effects on the room temperature photoluminescence of bulk ZnO: Exciton–LO phonon. Interact. Physica Status Solidi (b) 229, 845 (2002).CrossRef
47.
go back to reference T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Börner, W. Schade, A.C. Mofor, A. Bakin, and A. Waag, Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires. Appl. Phys. Lett. 89, 182107 (2006).CrossRef T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Börner, W. Schade, A.C. Mofor, A. Bakin, and A. Waag, Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires. Appl. Phys. Lett. 89, 182107 (2006).CrossRef
48.
go back to reference A. Singh, A. Mathur, D. Pal, A. Sengupta, R. Singh, and S. Chattopadhyay, Near room temperature atomic layer deposition of ZnO thin films on poly (methyl methacrylate) (PMMA) templates: a study of structure, morphology and photoluminescence of ZnO as an effect of template confinement. Vacuum 161, 398 (2019).CrossRef A. Singh, A. Mathur, D. Pal, A. Sengupta, R. Singh, and S. Chattopadhyay, Near room temperature atomic layer deposition of ZnO thin films on poly (methyl methacrylate) (PMMA) templates: a study of structure, morphology and photoluminescence of ZnO as an effect of template confinement. Vacuum 161, 398 (2019).CrossRef
49.
go back to reference D. Pal, A. Mathur, A. Singh, S. Pakhira, R. Singh, and S. Chattopadhyay, Binder-Free ZnO Cathode synthesized via ALD by direct growth of hierarchical ZnO nanostructure on current collector for high-performance rechargeable aluminium-ion batteries. ChemistrySelect 3, 12512 (2018).CrossRef D. Pal, A. Mathur, A. Singh, S. Pakhira, R. Singh, and S. Chattopadhyay, Binder-Free ZnO Cathode synthesized via ALD by direct growth of hierarchical ZnO nanostructure on current collector for high-performance rechargeable aluminium-ion batteries. ChemistrySelect 3, 12512 (2018).CrossRef
50.
go back to reference F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale 6, 10224 (2014).CrossRef F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale 6, 10224 (2014).CrossRef
51.
go back to reference M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, Photoluminescent and structural properties of precipitated ZnO fine particles. Jpn. J. Appl. Phys. 42, 481 (2003).CrossRef M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, Photoluminescent and structural properties of precipitated ZnO fine particles. Jpn. J. Appl. Phys. 42, 481 (2003).CrossRef
52.
go back to reference R.C. Rai, M. Guminiak, S. Wilser, B. Cai, and M.L. Nakarmi, Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition. J. Appl. Phys. 111, 073511 (2012).CrossRef R.C. Rai, M. Guminiak, S. Wilser, B. Cai, and M.L. Nakarmi, Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition. J. Appl. Phys. 111, 073511 (2012).CrossRef
53.
go back to reference S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, and E. Medina, Effect of structural disorder on the Urbach energy in Cu ternaries. Phys. Rev. B 64, 195101 (2001).CrossRef S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, and E. Medina, Effect of structural disorder on the Urbach energy in Cu ternaries. Phys. Rev. B 64, 195101 (2001).CrossRef
54.
go back to reference M. Kranjčec, I.P. Studenyak, G.S. Kovacs, I.D. Desnica Franković, V.V. Panko, P.P. Guranich, and V. Yu Slivka, Electric conductivity and optical absorption edge of Cu6P(SexS1−x)5I fast-ion conductors in the selenium-rich region. J. Phys. Chem. Solids 62, 665 (2001).CrossRef M. Kranjčec, I.P. Studenyak, G.S. Kovacs, I.D. Desnica Franković, V.V. Panko, P.P. Guranich, and V. Yu Slivka, Electric conductivity and optical absorption edge of Cu6P(SexS1−x)5I fast-ion conductors in the selenium-rich region. J. Phys. Chem. Solids 62, 665 (2001).CrossRef
55.
go back to reference E.Ş Tüzemen, S. Eker, H. Kavak, and R. Esen, Dependence of film thickness on the structural and optical properties of ZnO thin films. Appl. Surf. Sci. 255, 6195 (2009).CrossRef E.Ş Tüzemen, S. Eker, H. Kavak, and R. Esen, Dependence of film thickness on the structural and optical properties of ZnO thin films. Appl. Surf. Sci. 255, 6195 (2009).CrossRef
56.
go back to reference C.V. Thompson, Grain Growth in Polycrystalline Thin Films MRS Online Proceedings Library (OPL) 343, 3 (1994).CrossRef C.V. Thompson, Grain Growth in Polycrystalline Thin Films MRS Online Proceedings Library (OPL) 343, 3 (1994).CrossRef
57.
go back to reference T. Prasada Rao and M.C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579 (2009).CrossRef T. Prasada Rao and M.C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579 (2009).CrossRef
58.
go back to reference J.F. Chang, H.H. Kuo, I.C. Leu, and M.H. Hon, The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuators B Chem. 84, 258 (2002).CrossRef J.F. Chang, H.H. Kuo, I.C. Leu, and M.H. Hon, The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuators B Chem. 84, 258 (2002).CrossRef
59.
go back to reference D. Pal, J. Singhal, A. Mathur, A. Singh, S. Dutta, S. Zollner, and S. Chattopadhyay, Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films. Appl. Surf. Sci. 421, 341 (2017).CrossRef D. Pal, J. Singhal, A. Mathur, A. Singh, S. Dutta, S. Zollner, and S. Chattopadhyay, Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films. Appl. Surf. Sci. 421, 341 (2017).CrossRef
Metadata
Title
Self-Healing of Defect-Mediated Disorder in ZnO Thin Films Grown by Atomic Layer Deposition
Authors
Don P. Benny
Vikas Munya
Arpan Ghosh
Ravinder Kumar
Dipayan Pal
Herbert Pfnür
Sudeshna Chattopadhyay
Publication date
11-10-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 12/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10758-3

Other articles of this Issue 12/2023

Journal of Electronic Materials 12/2023 Go to the issue