Skip to main content
Top
Published in: Multimedia Systems 6/2022

10-08-2020 | Special Issue Paper

Semantic image segmentation algorithm in a deep learning computer network

Authors: Defu He, Chao Xie

Published in: Multimedia Systems | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Semantic image segmentation in computer networks is designed to determine the category to which each pixel in an image belongs. It is a basic computer vision task and has a very wide range of applications in practice. In recent years, semantic image segmentation algorithms in computer networks based on deep learning have attracted widespread attention due to their fast speed and high accuracy. However, due to the large number of downsampling layers in a deep learning model, the segmentation results are usually poor at the edge of an object, and there is currently no universal quantitative evaluation index to measure the performance of segmentation at the edge of an object. Solving these two problems is of great significance to semantic image segmentation algorithms in China. Based on traditional evaluation indicators, this paper proposes a region-based evaluation index to quantitatively measure the performance of segmentation at the edge of an object and proposes an improved loss function to improve model performance. The existing semantic image segmentation methods are summarized. This paper proposes regional-based evaluation indicators. Taking advantage of the particularity of semantic image segmentation tasks, this paper presents an efficient and accurate method for extracting the edges of objects. By defining the distance from pixels to the edges of objects, this paper proposes a fast algorithm for calculating the edge area. Based on this, three methods are proposed as well as an area-based evaluation indicator. The experimental results show that the accuracy of the loss function proposed in this paper, compared with that of the current mainstream cross-entropy loss function, is improved by 1% on the DeepLab model. For area-based evaluation indicators, a 4% accuracy improvement can be achieved, and on other segmentation models, there is also a significant improvement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, L., Qian, Bo, Lian, J.: Traffic scene segmentation based on RGB-D image and deep learning[J]. IEEE Trans Intell Transp Syst 99, 1–6 (2017) Li, L., Qian, Bo, Lian, J.: Traffic scene segmentation based on RGB-D image and deep learning[J]. IEEE Trans Intell Transp Syst 99, 1–6 (2017)
2.
go back to reference Yi, F., Li, R., Chang, B.: Remote sensing identification method for paddy field in hilly region based on object-oriented analysis[J]. Soc Agri Eng 31(11), 186–193 (2015) Yi, F., Li, R., Chang, B.: Remote sensing identification method for paddy field in hilly region based on object-oriented analysis[J]. Soc Agri Eng 31(11), 186–193 (2015)
3.
go back to reference Zhou, X., Takayama, R., Wang, S.: Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method[J]. Med Phys 44(10), 5221 (2017)CrossRef Zhou, X., Takayama, R., Wang, S.: Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method[J]. Med Phys 44(10), 5221 (2017)CrossRef
4.
go back to reference Chen, L.-C., Papandreou, G., Kokkinos, I.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Patt Anal Mach Intell 40(4), 834–848 (2016)CrossRef Chen, L.-C., Papandreou, G., Kokkinos, I.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Patt Anal Mach Intell 40(4), 834–848 (2016)CrossRef
5.
go back to reference Yanming Guo, Yu, Liu, A.O.: Deep learning for visual understanding: a review[J]. Neurocomputing 187, 27–48 (2015) Yanming Guo, Yu, Liu, A.O.: Deep learning for visual understanding: a review[J]. Neurocomputing 187, 27–48 (2015)
6.
go back to reference Shi, J.-F., Liu, F., Lin, Y.-H.: Polarimetric SAR image classification based on deep learning and hierarchical semantic model[J]. Acta Automatica Sinica 43(2), 215–226 (2017) Shi, J.-F., Liu, F., Lin, Y.-H.: Polarimetric SAR image classification based on deep learning and hierarchical semantic model[J]. Acta Automatica Sinica 43(2), 215–226 (2017)
7.
go back to reference Harley, A.W., Derpanis, K., Iasonas, K.: Learning dense convolutional embeddings for semantic segmentation[J]. Computer Sci 79(10), 1337–1342 (2015) Harley, A.W., Derpanis, K., Iasonas, K.: Learning dense convolutional embeddings for semantic segmentation[J]. Computer Sci 79(10), 1337–1342 (2015)
8.
go back to reference Li, M.-X., Su-Qin, Yu, Zhang, W.: Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images[J]. Internat J Ophthalmol 12(6), 1012–1020 (2019) Li, M.-X., Su-Qin, Yu, Zhang, W.: Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images[J]. Internat J Ophthalmol 12(6), 1012–1020 (2019)
9.
go back to reference Lee, M.-J., Choi, S.-Y., Jeong, H.-J.: A precise image crawling system with image classification based on deep learning[J]. Adv Sci Lett 23(3), 1623–1626 (2017)CrossRef Lee, M.-J., Choi, S.-Y., Jeong, H.-J.: A precise image crawling system with image classification based on deep learning[J]. Adv Sci Lett 23(3), 1623–1626 (2017)CrossRef
10.
go back to reference Tian, J.-X., Liu, G.-C., Gu, S.-S.: Deep learning in medical image analysis and its challenges[J]. Zidonghua Xuebao/acta Automatica Sinica 44(3), 401–424 (2018) Tian, J.-X., Liu, G.-C., Gu, S.-S.: Deep learning in medical image analysis and its challenges[J]. Zidonghua Xuebao/acta Automatica Sinica 44(3), 401–424 (2018)
11.
go back to reference Wang, B., Xiong, H., Lin, W.: Multitask learning of compact semantic codebooks for context-aware scene modeling[J]. IEEE Trans Image Process 25(11), 5411–5426 (2016)MathSciNetCrossRefMATH Wang, B., Xiong, H., Lin, W.: Multitask learning of compact semantic codebooks for context-aware scene modeling[J]. IEEE Trans Image Process 25(11), 5411–5426 (2016)MathSciNetCrossRefMATH
12.
go back to reference Kristan, M., Sulic, V., Kovacic, S.: Fast image-based obstacle detection from unmanned surface vehicles[J]. IEEE Trans Cybern 46(3), 641–654 (2015)CrossRef Kristan, M., Sulic, V., Kovacic, S.: Fast image-based obstacle detection from unmanned surface vehicles[J]. IEEE Trans Cybern 46(3), 641–654 (2015)CrossRef
13.
go back to reference Qin, Z., Shelton, C.R.: Event detection in continuous video: an inference in point process approach[J]. IEEE Trans Image Process 26(12), 5680–5691 (2017)MathSciNetCrossRefMATH Qin, Z., Shelton, C.R.: Event detection in continuous video: an inference in point process approach[J]. IEEE Trans Image Process 26(12), 5680–5691 (2017)MathSciNetCrossRefMATH
14.
go back to reference Zhang, F., Zhong, B.-J.: Image retrieval based on interested objects[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica 46(8), 1915–1923 (2018) Zhang, F., Zhong, B.-J.: Image retrieval based on interested objects[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica 46(8), 1915–1923 (2018)
15.
go back to reference Tsai, Y.-H., Shen, X., Lin, Z.: Sky is not the limit: semantic-aware sky replacement[J]. Acm Trans Graph 35(4), 1–11 (2016)CrossRef Tsai, Y.-H., Shen, X., Lin, Z.: Sky is not the limit: semantic-aware sky replacement[J]. Acm Trans Graph 35(4), 1–11 (2016)CrossRef
16.
go back to reference Thirunarayanan, I., Khetarpal, K., Koppal, S.: Creating segments and effects on comics by clustering gaze data[J]. Acm Trans Multimed Comput Commun Appl 13(3), 1–23 (2017)CrossRef Thirunarayanan, I., Khetarpal, K., Koppal, S.: Creating segments and effects on comics by clustering gaze data[J]. Acm Trans Multimed Comput Commun Appl 13(3), 1–23 (2017)CrossRef
17.
go back to reference Ye, F., Li, W., Chen, J.: Image fast segmentation algorithm based on saliency region detection and level set[J]. Dianzi Yu Xinxi Xuebao/J Elect Infor Technol 39(11), 2661–2668 (2017) Ye, F., Li, W., Chen, J.: Image fast segmentation algorithm based on saliency region detection and level set[J]. Dianzi Yu Xinxi Xuebao/J Elect Infor Technol 39(11), 2661–2668 (2017)
18.
go back to reference LIU, L.-M., LI, K.-Q., LIAO, X.-L.: Heat co-diffusion based image co-segmentation algorithm[J]. J Optoelect·Laser 27(10), 1111–1119 (2016) LIU, L.-M., LI, K.-Q., LIAO, X.-L.: Heat co-diffusion based image co-segmentation algorithm[J]. J Optoelect·Laser 27(10), 1111–1119 (2016)
19.
go back to reference Wu, Q.-H., Wu, J., Zhu, L.: Image segmentation algorithm based on graph theory and FCM[J]. Chin J Liquid Cryst Displ 31(1), 112–116 (2016)CrossRef Wu, Q.-H., Wu, J., Zhu, L.: Image segmentation algorithm based on graph theory and FCM[J]. Chin J Liquid Cryst Displ 31(1), 112–116 (2016)CrossRef
20.
go back to reference Wu, Q.-H., Wu, J., Zhu, L.: Image segmentation algorithm based on graph theory and FCM[J]. Chin J Liqu Cryst Disp 31(1), 112–116 (2016)CrossRef Wu, Q.-H., Wu, J., Zhu, L.: Image segmentation algorithm based on graph theory and FCM[J]. Chin J Liqu Cryst Disp 31(1), 112–116 (2016)CrossRef
21.
go back to reference Wang, X.-H., Wang, J.-L., Fang, L.-L.: An adaptive C-V image segmentation model guided by gray difference energy function[J]. Patt Recognit Art Intell 28(3), 214–222 (2015) Wang, X.-H., Wang, J.-L., Fang, L.-L.: An adaptive C-V image segmentation model guided by gray difference energy function[J]. Patt Recognit Art Intell 28(3), 214–222 (2015)
22.
go back to reference Xu, L., Lü, J.: Bayberry image segmentation based on homomorphic filtering and K-means clustering algorithm[J]. Chin Soc Agricult Eng 31(14), 202–208 (2015) Xu, L., Lü, J.: Bayberry image segmentation based on homomorphic filtering and K-means clustering algorithm[J]. Chin Soc Agricult Eng 31(14), 202–208 (2015)
23.
go back to reference Anupama, N., Kumar, S.S., Reddy, S.E.: Generalized rough intuitionistic fuzzy c-means for MR brain image segmentation[J]. Iet Image Process 11(9), 777–785 (2017)CrossRef Anupama, N., Kumar, S.S., Reddy, S.E.: Generalized rough intuitionistic fuzzy c-means for MR brain image segmentation[J]. Iet Image Process 11(9), 777–785 (2017)CrossRef
24.
go back to reference Wang Chunyan, Xu, Aigong, Y.B.: High resolution remote sensing image segmentation based on the interval type-2 fuzzy model[J]. Chin J Sci Inst 37(3), 658–666 (2016) Wang Chunyan, Xu, Aigong, Y.B.: High resolution remote sensing image segmentation based on the interval type-2 fuzzy model[J]. Chin J Sci Inst 37(3), 658–666 (2016)
25.
go back to reference Huang, C., Zeng, Li: Level set evolution model for image segmentation based on variable exponent p-Laplace equation[J]. Appl Math Model 40(17–18), 7739–7750 (2016)MathSciNetCrossRefMATH Huang, C., Zeng, Li: Level set evolution model for image segmentation based on variable exponent p-Laplace equation[J]. Appl Math Model 40(17–18), 7739–7750 (2016)MathSciNetCrossRefMATH
Metadata
Title
Semantic image segmentation algorithm in a deep learning computer network
Authors
Defu He
Chao Xie
Publication date
10-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 6/2022
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-020-00678-1

Other articles of this Issue 6/2022

Multimedia Systems 6/2022 Go to the issue