Skip to main content
Top
Published in:
Cover of the book

2015 | Online First | Chapter

Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells

Authors : Cristian Miere, Liani Devito, Dusko Ilic

Published in: Methods in Molecular Biology™

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In an attempt to bring pluripotent stem cell biology closer to reaching its full potential, many groups have focused on improving reprogramming protocols over the past several years. The episomal modified Sendai virus-based vector has emerged as one of the most practical ones. Here we describe reprogramming of mesenchymal stromal/stem cells (MSC) derived from umbilical cord Wharton’s Jelly into induced pluripotent stem cells (iPSC) using genome non-integrating Sendai virus-based vectors. The detailed protocols of iPSC colony cryopreservation (vitrification) and adaption to feeder-free culture conditions are also included.
Literature
2.
go back to reference Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661PubMedCrossRef Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661PubMedCrossRef
3.
go back to reference Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104PubMed Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104PubMed
4.
go back to reference Hou Z, Zhang J, Schwartz MP et al (2013) A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther 4(Suppl 1):S12PubMedPubMedCentralCrossRef Hou Z, Zhang J, Schwartz MP et al (2013) A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther 4(Suppl 1):S12PubMedPubMedCentralCrossRef
5.
go back to reference Paşca SP, Portmann T, Voineagu I et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662PubMedPubMedCentralCrossRef Paşca SP, Portmann T, Voineagu I et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662PubMedPubMedCentralCrossRef
6.
go back to reference Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705PubMedPubMedCentralCrossRef Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705PubMedPubMedCentralCrossRef
7.
go back to reference Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRef Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRef
8.
go back to reference Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638PubMedPubMedCentralCrossRef Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638PubMedPubMedCentralCrossRef
10.
go back to reference Fusaki N, Ban H, Nishiyama A (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedPubMedCentralCrossRef Fusaki N, Ban H, Nishiyama A (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedPubMedCentralCrossRef
11.
go back to reference Nishishita N, Shikamura M, Takenaka C et al (2012) Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One 7(6):e38389PubMedPubMedCentralCrossRef Nishishita N, Shikamura M, Takenaka C et al (2012) Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One 7(6):e38389PubMedPubMedCentralCrossRef
12.
go back to reference Ono M, Hamada Y, Horiuchi Y et al (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7:e42855PubMedPubMedCentralCrossRef Ono M, Hamada Y, Horiuchi Y et al (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7:e42855PubMedPubMedCentralCrossRef
13.
go back to reference Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461PubMedPubMedCentralCrossRef Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461PubMedPubMedCentralCrossRef
14.
go back to reference Jin ZB, Okamoto S, Xiang P et al (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling Jin ZB, Okamoto S, Xiang P et al (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling
15.
go back to reference Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107PubMedPubMedCentralCrossRef Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107PubMedPubMedCentralCrossRef
16.
go back to reference Wakao H, Yoshikiyo K, Koshimizu U et al (2013) Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:546–558PubMedCrossRef Wakao H, Yoshikiyo K, Koshimizu U et al (2013) Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:546–558PubMedCrossRef
17.
go back to reference Kim DW, Staples M, Shinozuka K et al (2013) Wharton’s Jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712PubMedPubMedCentralCrossRef Kim DW, Staples M, Shinozuka K et al (2013) Wharton’s Jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712PubMedPubMedCentralCrossRef
19.
go back to reference Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433PubMedCrossRef Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433PubMedCrossRef
20.
go back to reference Badraiq H, Devito L, Ilic D (2014) Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Methods Mol Biol [Epub ahead of print] Badraiq H, Devito L, Ilic D (2014) Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Methods Mol Biol [Epub ahead of print]
21.
go back to reference Devito L, Badraiq H, Galleu A et al (2014) Wharton’s Jelly MSC derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1+ subpopulation. Regen Med (in press) Devito L, Badraiq H, Galleu A et al (2014) Wharton’s Jelly MSC derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1+ subpopulation. Regen Med (in press)
22.
go back to reference Reubinoff BE, Pera MF, Vajta G et al (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194PubMedCrossRef Reubinoff BE, Pera MF, Vajta G et al (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194PubMedCrossRef
23.
go back to reference Ilic D, Stephenson E, Wood V et al (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128PubMedCrossRef Ilic D, Stephenson E, Wood V et al (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128PubMedCrossRef
24.
go back to reference Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381PubMedCrossRef Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381PubMedCrossRef
Metadata
Title
Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells
Authors
Cristian Miere
Liani Devito
Dusko Ilic
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/7651_2014_163