Skip to main content
Top
Published in: Microsystem Technologies 10/2019

16-03-2019 | Technical Paper

Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor

Authors: Meetu Nag, Jaideep Singh, Ajay Kumar, P. A. Alvi, Kulwant Singh

Published in: Microsystem Technologies | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MEMS pressure sensor has shown a remarkable change in revenue collection during the year 2018. Due to recent growth in smart microsystem technology for automation systems, demand has grown substantially for sensors. High sensitivity, flexibility, miniaturization and bulk production are some of the key factors of a pressure sensor in achieving new heights in the MEMS market. In this paper, Graphene piezo resistive material has been analysed for pressure sensing elements and compared with Polysilicon in terms of sensitivity and sensor performance degradation at different temperature. MEMS pressure sensors using Polysilicon and Graphene piezo resistive materials were simulated on silicon (100) substrate by COMSOL Multiphysics 5.3a version. The simulation result shows that at room temperature polysilicon pressure sensor performs well with pressure sensitivity of 3.81 mV/psi as well as it is found that graphene pressure sensor also shows better results at room temperature showing a pressure sensitivity of 3.98 mV/psi. As on frequently increasing the temperature it is noticed that polysilicon pressure sensitivity degrades with a factor of 0.64 mV/psi. However, graphene pressure sensor shows very less variation in sensitivity at higher temperature. Although it shows a small increment of 0.02 mV/psi in the pressure sensitivity. This analysis opens the path to utilise the graphene pressure sensor at high temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon N Y 51:236–242CrossRef Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon N Y 51:236–242CrossRef
go back to reference Bhatt K, Rani C, Kapoor A, Kumar P, Sandeep S, Kumar S, Singh R, Tripathi CC (2018) A facile approach to fabricate graphene based piezoresistive strain sensor on paper substrate. Indian J Pure Appl Phys 56(5):361–366 Bhatt K, Rani C, Kapoor A, Kumar P, Sandeep S, Kumar S, Singh R, Tripathi CC (2018) A facile approach to fabricate graphene based piezoresistive strain sensor on paper substrate. Indian J Pure Appl Phys 56(5):361–366
go back to reference Chen X, Zheng X, Kim J-K, Li X, Lee D-W (2011) Investigation of graphene piezoresistors for use as strain gauge sensors. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 29(6):06FE01 Chen X, Zheng X, Kim J-K, Li X, Lee D-W (2011) Investigation of graphene piezoresistors for use as strain gauge sensors. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 29(6):06FE01
go back to reference Lloyd-Hughes J, Jeon TI (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33(9):871–925CrossRef Lloyd-Hughes J, Jeon TI (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33(9):871–925CrossRef
go back to reference Malhaire C, Barbier D (2003) Design of a polysilicon-on-insulator pressure sensor with original polysilicon layout for harsh environment. Thin Solid Films 427(1–2):362–366CrossRef Malhaire C, Barbier D (2003) Design of a polysilicon-on-insulator pressure sensor with original polysilicon layout for harsh environment. Thin Solid Films 427(1–2):362–366CrossRef
go back to reference Manjunath MS, Nagarjuna N, Uma G, Umapathy M, Nayak MM, Rajanna K (2018) Design, fabrication and testing of reduced graphene oxide strain gauge based pressure sensor with increased sensitivity. Microsyst Technol 24:2969–2981CrossRef Manjunath MS, Nagarjuna N, Uma G, Umapathy M, Nayak MM, Rajanna K (2018) Design, fabrication and testing of reduced graphene oxide strain gauge based pressure sensor with increased sensitivity. Microsyst Technol 24:2969–2981CrossRef
go back to reference Meti S, Balavald KB, Sheeparmatti BG (2016) Open access MEMS piezoresistive pressure sensor: a survey. Int J Eng Res Appl 6(4):23–31 Meti S, Balavald KB, Sheeparmatti BG (2016) Open access MEMS piezoresistive pressure sensor: a survey. Int J Eng Res Appl 6(4):23–31
go back to reference Patra S, Choudhary R, Madhuri R, Sharma PK (2018) Graphene-based portable, flexible, and wearable sensing platforms: an emerging trend for health care and biomedical surveillance. Elsevier Inc., Amsterdam Patra S, Choudhary R, Madhuri R, Sharma PK (2018) Graphene-based portable, flexible, and wearable sensing platforms: an emerging trend for health care and biomedical surveillance. Elsevier Inc., Amsterdam
go back to reference Qu HW, Yao SY, Zhang R, Mao GR, Zhang WX (1998) Polysilicon piezoresistive pressure sensor and its temperature compensation. In: 1998 5th International conference on solid-state and integrated circuit technology proceedings, pp 914–916 Qu HW, Yao SY, Zhang R, Mao GR, Zhang WX (1998) Polysilicon piezoresistive pressure sensor and its temperature compensation. In: 1998 5th International conference on solid-state and integrated circuit technology proceedings, pp 914–916
go back to reference Sarkar T, Kundu MK, Azmain MAA, Khan MAG (2017) Thermal conduction in graphene thin films considering different materials of various shapes. In: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, pp 369–374 Sarkar T, Kundu MK, Azmain MAA, Khan MAG (2017) Thermal conduction in graphene thin films considering different materials of various shapes. In: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, pp 369–374
go back to reference Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, Fang Y (2018) Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14(27):1–7CrossRef Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, Fang Y (2018) Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14(27):1–7CrossRef
go back to reference Singh K, Joyce R, Varghese S, Akhtar J (2015) Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor. Sens Actuators A Phys 223:151–158CrossRef Singh K, Joyce R, Varghese S, Akhtar J (2015) Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor. Sens Actuators A Phys 223:151–158CrossRef
go back to reference Sujit ES, Kusuma N, Hemalatha B (2018) Polysilicon piezoresistive MEMS pressure sensor: study of analytical solutions for diaphragm and design and simulation. In: Proceedings of 2017 IEEE international conference communication signal process. ICCSP 2017, vol 2018–Janua, no 1, pp 1606–1610 Sujit ES, Kusuma N, Hemalatha B (2018) Polysilicon piezoresistive MEMS pressure sensor: study of analytical solutions for diaphragm and design and simulation. In: Proceedings of 2017 IEEE international conference communication signal process. ICCSP 2017, vol 2018–Janua, no 1, pp 1606–1610
go back to reference Tian H, Shu Y, Wang XF, Mohammad MA, Bie Z, Xie QY, Li C, Mi WT, Yang Y, Ren TL (2015) A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep 5:8603CrossRef Tian H, Shu Y, Wang XF, Mohammad MA, Bie Z, Xie QY, Li C, Mi WT, Yang Y, Ren TL (2015) A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep 5:8603CrossRef
go back to reference Xiaowei L, Xin L, Wei W, Xilian W, Wei C, Zhenmao L, Maojun F (1998) Computer simulation of polysilicon piezoresistive pressure sensors. In: 1998 5th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No. 98EX105). IEEE, pp 891–894 Xiaowei L, Xin L, Wei W, Xilian W, Wei C, Zhenmao L, Maojun F (1998) Computer simulation of polysilicon piezoresistive pressure sensors. In: 1998 5th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No. 98EX105). IEEE, pp 891–894
go back to reference Zhao J, Zhang GY, Shi DX (2013) Review of graphene-based strain sensors. Chin Phys B 22(5):057701CrossRef Zhao J, Zhang GY, Shi DX (2013) Review of graphene-based strain sensors. Chin Phys B 22(5):057701CrossRef
go back to reference Zhu S-E, Krishna Ghatkesar M, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102(16):161904CrossRef Zhu S-E, Krishna Ghatkesar M, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102(16):161904CrossRef
Metadata
Title
Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor
Authors
Meetu Nag
Jaideep Singh
Ajay Kumar
P. A. Alvi
Kulwant Singh
Publication date
16-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 10/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04392-5

Other articles of this Issue 10/2019

Microsystem Technologies 10/2019 Go to the issue