Skip to main content
Top

2020 | OriginalPaper | Chapter

Sentiment Analysis and Deep Learning Based Chatbot for User Feedback

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the conversational agents like Chatbots are widely employed for achieving a better Human-Computer Interaction (HCI). In this paper, a retrieval based chatbot is designed using Natural Language Processing (NLP) techniques and a Multilayer Perceptron (MLP) neural network. The purpose of the chatbot is to extract user’s feedback based on the services provided to them. User feedback is a very essential component for the betterment of the service. Chatbot serves as a better interface for obtaining an appropriate user feedback. Furthermore, sentiment analysis is done on the feedback as a result a suitable response is delivered to the user. A Long Short Term Neural Network (LSTM) is used to classify the sentiment of the feedback.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basari, A.S.H., Hussin, B., Ananta, I.G.P., Zeniarja, J.: Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimisation. Procedia Eng. 53, 453–462 (2013)CrossRef Basari, A.S.H., Hussin, B., Ananta, I.G.P., Zeniarja, J.: Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimisation. Procedia Eng. 53, 453–462 (2013)CrossRef
3.
go back to reference Bravo-Marquez, F., Mendoza, M., Poblete, B.: Combining strengths, emotions and polarities for boosting twitter sentiment analysis. In: Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, p. 2 (2013) Bravo-Marquez, F., Mendoza, M., Poblete, B.: Combining strengths, emotions and polarities for boosting twitter sentiment analysis. In: Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, p. 2 (2013)
5.
go back to reference Khan, A.Z., Atique, M., Thakare, V.: Combining lexicon-based and learning based methods for twitter sentiment analysis. Int. J. Electron. Commun. Soft Comput. Sci. Eng. (IJECSCSE), 89 (2015) Khan, A.Z., Atique, M., Thakare, V.: Combining lexicon-based and learning based methods for twitter sentiment analysis. Int. J. Electron. Commun. Soft Comput. Sci. Eng. (IJECSCSE), 89 (2015)
6.
go back to reference Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large dataset for research in unstructured multi-turn dialogue systems (2015). arXiv:1506.08909 Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large dataset for research in unstructured multi-turn dialogue systems (2015). arXiv:​1506.​08909
8.
go back to reference Wang, H., Lu, Z., Li, H., Chen, E.: A dataset for research on short-text conversations. In: EMNLP, pp. 935–945 (2013) Wang, H., Lu, Z., Li, H., Chen, E.: A dataset for research on short-text conversations. In: EMNLP, pp. 935–945 (2013)
10.
go back to reference Wu, Y., Wu, W., Li, Z., Zhou, M.: Topic augmented neural network for short text conversation. CoRR abs/1605.00090 (2016) Wu, Y., Wu, W., Li, Z., Zhou, M.: Topic augmented neural network for short text conversation. CoRR abs/1605.00090 (2016)
12.
go back to reference Zhou, X., Dong, D., Wu, H., Zhao, S., Yan, R., Yu, D., Liu, X., Tian, H.: Multiview response selection for human-computer conversation. In: EMNLP 2016 (2016) Zhou, X., Dong, D., Wu, H., Zhao, S., Yan, R., Yu, D., Liu, X., Tian, H.: Multiview response selection for human-computer conversation. In: EMNLP 2016 (2016)
Metadata
Title
Sentiment Analysis and Deep Learning Based Chatbot for User Feedback
Authors
Nivethan
Sriram Sankar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_22