Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Shape-preserving properties of a new family of generalized Bernstein operators

Authors: Qing-Bo Cai, Xiao-Wei Xu

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce a new family of generalized Bernstein operators based on q integers, called \((\alpha,q)\)-Bernstein operators, denoted by \(T_{n,q,\alpha}(f)\). We investigate a Kovovkin-type approximation theorem, and obtain the rate of convergence of \(T_{n,q,\alpha}(f)\) to any continuous functions f. The main results are the identification of several shape-preserving properties of these operators, including their monotonicity- and convexity-preserving properties with respect to \(f(x)\). We also obtain the monotonicity with n and q of \(T_{n,q,\alpha}(f)\).
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

A generalization of Bernstein polynomials based on q-integers was proposed by Lupaş in 1987 in [1]. However, the Lupaş q-Bernstein operators are rational functions rather than polynomials. In 1997, Phillips [2] proposed the Phillips q-Bernstein polynomials, and for decades thereafter the application of q integers in positive linear operators became a hot topic in approximation theory, such as generalized q-Bernstein polynomials [36], Durrmeyer-type q-Bernstein operators [79], Kantorovich-type q-Bernstein operators [1013], etc. As we know, q integers play important roles not only in approximation theory, but also in CAGD. Based on the Phillips q-Bernstein polynomials [2], which are generalizations of Bernstein polynomials, generalized Bézier curves and surfaces were introduced in [1416]. In [14], Oruç and Phillips constructed q-Bézier curves using the basis functions of Phillips q-Bernstein polynomials. Dişibüyük and Oruç [15, 16] defined the q generalization of rational Bernstein–Bézier curves and tensor product q-Bernstein–Bézier surfaces. Moreover, Simeonov et al. [17] introduced a new variant of the blossom, the q blossom, which is specifically adapted to developing identities and algorithms for q-Bernstein bases and q-Bézier curves. In 2014, Han et al. [18] proposed a generalization of q-analog Bézier curves with one shape parameter, and established degree evaluation and de Casteljau algorithms and some other properties. In 2016, Han et al. [19] introduced a new generalization of weighted rational Bernstein–Bézier curves based on q integers, and investigated the generalized rational Bézier curve from a geometric point of view, obtaining degree evaluation and de Casteljau algorithms, etc.
Recently, Chen et al. [20] introduced a new family of α-Bernstein operators, and investigated some approximation properties, such as the rate of convergence, Voronovskaja-type asymptotic formulas, etc. They also obtained the monotonic and convex properties. For \(f(x)\in [0,1]\), \(n\in \mathbb{N}\), and any fixed real α, the α-Bernstein operators they introduced are defined as
$$\begin{aligned} T_{n,\alpha }=\sum_{i=0}^{n}f_{i}p_{n,i}^{(\alpha )}(x), \end{aligned}$$
(1)
where \(f_{i}=f ( \frac{i}{n} ) \). For \(i=0,1,\ldots,n\), the α-Bernstein polynomial \(p_{n,i}^{\alpha }(x)\) of degree n is defined by \(p_{1,0}^{(\alpha )}(x)=1-x\), \(p_{1,1}^{(\alpha )}(x)=x\) and
p n , i ( α ) ( x ) = [ ( n 2 i ) ( 1 α ) x + ( n 2 i 2 ) ( 1 α ) ( 1 x ) + ( n i ) α x ( 1 x ) ] × x i 1 ( 1 x ) n 1 i ,
(2)
where \(n\geq 2\).
Motivated by above research, in this paper we propose the q analogue of α-Bernstein operators, called \((\alpha , q)\)-Bernstein operators, which are defined as
$$ T_{n,q,\alpha }(f;x)=\sum_{i=0}^{n}f_{i}p_{n,q,i}^{(\alpha )}(x), $$
(3)
where \(q\in (0,1]\), \(f_{i}=f ( \frac{[i]_{q}}{[n]_{q}} ) \), \(i=0,1,2,\ldots,n\), \(p_{1,q,0}^{(\alpha )}(x)=1-x\), \(p_{1,q,1}^{(\alpha )}(x)=x\), and
p n , q , i ( α ) ( x ) = ( [ n 2 i ] q ( 1 α ) x + [ n 2 i 2 ] q ( 1 α ) q n i 2 ( 1 q n i 1 x ) + [ n i ] q α x ( 1 q n i 1 x ) ) x i 1 ( 1 x ) q n i 1 ( n 2 ) .
(4)
By simple computations, we can also express the \((\alpha , q)\) operators (3) as
T n , q , α ( f ; x ) = ( 1 α ) i = 0 n 1 g i [ n 1 i ] q x i ( 1 x ) q n 1 i + α i = 0 n f i [ n i ] q x i ( 1 x ) q n i ,
(5)
where
$$\begin{aligned} g_{i}= \biggl( 1-\frac{q^{n-1-i}[i]_{q}}{[n-1]_{q}} \biggr) f_{i}+ \frac{q ^{n-1-i}[i]_{q}}{[n-1]_{q}}f_{i+1}. \end{aligned}$$
(6)
Here, we mention some definitions based on q integers, the details of which can be found in [21, 22]. For any fixed real number \(0< q\leq 1\) and each non-negative integer k, we denote q-integers by \([k]_{q}\), where
$$ [k]_{q}:= \textstyle\begin{cases} \frac{1-q^{k}}{1-q}, &q\neq 1, \\ k, &q=1. \end{cases} $$
Also, q-factorial and q-binomial coefficients are defined as follows:
[ k ] q ! : = { [ k ] q [ k 1 ] q [ 1 ] q , k = 1 , 2 , , 1 , k = 0 , [ n k ] q : = [ n ] q ! [ k ] q ! [ n k ] q ! ( n k 0 ) .
The q-analog of \((1+x)^{n}\) is defined by \((1+x)_{q}^{n}:=\prod_{s=0}^{n-1} ( 1+q^{s}x ) \). The q derivative and q derivative of the product are defined as \(D_{q}f(x):=\frac{d_{q}f(x)}{d _{q}x}=\frac{f(qx)-f(x)}{(q-1)x} \) and \(D_{q}(f(x)g(x)):=f(qx)D_{q}g(x)+g(x)D _{q}f(x)\), respectively. We also have \(D_{q}x^{n}=[n]_{q}x^{n-1}\) and \(D_{q}(1-x)_{q}^{n}=-[n]_{q}(1-qx)_{q}^{n-1}\).
The rest of this paper is organized as follows. In the next section, we give some basic properties of the operators \(T_{n,q,\alpha }(f)\), such as the moments and central moments for proving the convergence theorems, the forward difference form of \(T_{n,q,\alpha }(f)\) for proving shape-preserving properties, etc. In Sect. 3, we obtain the convergence property and the rate of convergence theorem. In Sect. 4, we investigate some shape-preserving properties, such as monotonicity- and convexity-preserving properties with respect to \(f(x)\), and also we study the monotonicity with n and q of \(T_{n,q,\alpha }(f)\).

2 Auxiliary results

For proving the main results, we require the following lemmas.
Lemma 2.1
We have the following equalities:
$$\begin{aligned} T_{n,q,\alpha }(1;x)=1, \quad\quad T_{n,q,\alpha }(t;x)=x. \end{aligned}$$
(7)
Proof
By (5), we have
T n , q , α ( 1 ; x ) = ( 1 α ) i = 0 n 1 [ n 1 i ] q x i ( 1 x ) q n 1 i + α i = 0 n [ n i ] q x i ( 1 x ) q n i = 1 .
However,
T n , q , α ( t ; x ) = ( 1 α ) i = 0 n 1 [ ( 1 q n 1 i [ i ] q [ n 1 ] q ) [ i ] q [ n ] q + q n 1 i [ i ] q [ n 1 ] q [ i + 1 ] q [ n ] q ] [ n 1 i ] q x i ( 1 x ) q n 1 i + α i = 0 n [ i ] q [ n ] q [ n i ] q x i ( 1 x ) q n i = ( 1 α ) i = 0 n 1 [ i ] q [ n 1 ] q [ n 1 i ] q x i ( 1 x ) q n 1 i + α i = 0 n [ i ] q [ n ] q [ n i ] q x i ( 1 x ) q n i = ( 1 α ) x + α x = x .
Lemma 2.1 is proved. □
Remark 2.2
From Lemma 2.1, we know that the \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\) reproduce linear functions; that is,
$$\begin{aligned} T_{n,q,\alpha }(at+b;x)=ax+b, \end{aligned}$$
for all real numbers a and b.
We immediately obtain Lemma 2.3 from (5) and Lemma 2.1.
Lemma 2.3
For all functions f and g defined in \([0,1]\), \(x\in [0,1]\), real numbers λ, μ defined in \([0,1]\), and \(q\in (0,1]\), the following statements hold true.
(i)
Endpoint interpolation: \(T_{n,q,\alpha }(f;0)=f(0)\) and \(T_{n,q,\alpha }(f;1)=f(1)\).
 
(ii)
Linearity: \(T_{n,q,\alpha }(\lambda f+\mu g;x)= \lambda T_{n,q,\alpha }(f;x)+\mu T_{n,q,\alpha }(g;x)\).
 
(iii)
Non-negative: For \(0\leq \alpha \leq 1\) and \(0< q<1\), if f is non-negative on \([0,1]\), so is \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\).
 
(iv)
Monotone: For fixed \(0\leq \alpha \leq 1\) and \(0< q<1\), if \(f\geq g\), then \(T_{n,q,\alpha }(f;x)\geq T_{n,q,\alpha }(g;x)\).
 
Lemma 2.4
(i)
The \((\alpha , q)\)-Bernstein operators may be expressed in the form
T n , q , α ( f ; x ) = r = 0 n ( ( 1 α ) [ n 1 r ] q q r g 0 + α [ n r ] q q r f 0 ) x r ,
(8)
where [ n 1 n ] q = 0 , \(\triangle_{q}^{r}f_{j}=\triangle_{q}^{r-1}f_{j+1}-q ^{r-1}\triangle_{q}^{r-1}f_{j}\), \(r\geq 1\), with \(\triangle_{q}^{0}f _{j}=f_{j}=f ( \frac{[j]_{q}}{[n]_{q}} ) \).
 
(ii)
The higher-order forward difference of \(g_{i}\) may be expressed in the form
$$\begin{aligned} \triangle_{q}^{r}g_{i}= \biggl( 1- \frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) \triangle_{q}^{r}f_{i}+ \frac{q^{n-i-1-r}[i+r]_{q}}{[n-1]_{q}}\triangle _{q}^{r}f_{i+1}, \end{aligned}$$
(9)
where \(\triangle_{q}^{0}g_{i}=g_{i}\), which is defined in (6).
 
Proof
We can obtain (8) easily by [2]. Next, in order to prove (9), we use induction on r. It is clear that (9) holds for \(r=0\). Let us assume that (9) holds for some \(r=k\geq 0\). For \(r=k+1\), we have
$$\begin{aligned}& \triangle_{q}^{k+1}g_{i} \\& \quad = \triangle_{q}^{k}g_{i+1}-q^{k} \triangle_{q}^{k}g_{i} \\& \quad = \biggl( 1-\frac{q^{n-i-2}[i+1]_{q}}{[n-1]_{q}} \biggr) \triangle_{q} ^{k}f_{i+1}+\frac{q^{n-i-2-k}[i+k+1]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f _{i+2} \\& \quad \quad {} -q^{k} \biggl[ \biggl( 1-\frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) \triangle_{q}^{k}f_{i}+\frac{q^{n-i-k-1}[i+k]_{q}}{[n-1]_{q}} \triangle _{q}^{k}f_{i+1} \biggr] \\& \quad = \biggl[ 1-\frac{q^{n-i-2} ( 1+q[i]_{q} ) }{[n-1]_{q}} \biggr] \triangle_{q}^{k}f_{i+1}- \biggl( 1-\frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) q ^{k}\triangle_{q}^{k}f_{i} \\& \quad \quad {} -\frac{q^{n-i-1}[i+k]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+1}+ \frac{q ^{n-i-2-k}[i+k]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+2} \\& \quad = \biggl( 1-\frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) \triangle_{q}^{k+1}f _{i}-\frac{q^{n-i-2}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+1}- \frac{q^{n-i-1}[i+k]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+1} \\& \quad \quad {} +\frac{q^{n-i-2-k}[i+k+1]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+2} \\& \quad = \biggl( 1-\frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) \triangle_{q}^{k+1}f _{i}-\frac{q^{n-i-2}[i+k+1]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+1}+ \frac{q ^{n-i-1-k}[i+k+1]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{i+2} \\& \quad = \biggl( 1-\frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) \triangle_{q}^{k+1}f _{i}+\frac{q^{n-i-k-2}[i+k+1]_{q}}{[n-1]_{q}} \bigl( \triangle_{q}^{k}f _{i+2}-q^{k}\triangle_{q}^{k}f_{i+1} \bigr) \\& \quad = \biggl( 1-\frac{q^{n-i-1}[i]_{q}}{[n-1]_{q}} \biggr) \triangle_{q}^{k+1}f _{i}+\frac{q^{n-i-k-2}[i+k+1]_{q}}{[n-1]_{q}}\triangle_{q}^{k+1}f_{i+1}. \end{aligned}$$
This shows that (9) holds when k is replaced by \(k+1\), and this completes the proof of Lemma 2.4. □
Since \(f [ \frac{[j]_{q}}{[n]_{q}},\frac{[j+1]_{q}}{[n]_{q}},\ldots, \frac{[j+k]_{q}}{[n]_{q}} ] =\frac{[n]_{q}^{k}\triangle_{q}^{k}f _{j}}{q^{\frac{k(2j+k-1)}{2}}[k]_{q}!}=\frac{f^{(k)}(\xi )}{k!}\), where \(\xi \in ( \frac{[j]_{q}}{[n]_{q}},\frac{[j+k]_{q}}{[n]_{q}} ) \), the q differences of the monomial \(x^{k}\) of order greater than k are zero. We see from Lemma 2.4 that, for all \(n\geq k\), \(T_{n,q,\alpha } ( t^{k};x ) \) is a polynomial of degree k. Actually, the \((\alpha , q)\)-Bernstein operators are degree-reducing on polynomials; that is, if f is a polynomial of degree m, and then \(T_{n,q,\alpha }(f)\) is a polynomial of degree \(\leq \min\{m,n\}\). In particular, we have the following results.
Lemma 2.5
Letting \(f(t)=t^{k}\), \(n-1\geq k\geq 2\), we have
$$\begin{aligned} T_{n,q,\alpha }\bigl(t^{k};x\bigr)=a_{k}x^{k}+a_{k-1}x^{k-1}+ \cdots+a_{1}x+a_{0}, \end{aligned}$$
where \(a_{k}=\frac{q^{\frac{k(k-1)}{2}}[n-2]_{q}!}{[n-k]_{q}![n]_{q} ^{k}} \{ (1-\alpha )[n-k]_{q}[n-1+k]_{q}+\alpha [n]_{q}[n-1]_{q} \} \).
Proof
Indeed, from (9) and \(\triangle_{q}^{k}f_{j}=\frac{q^{ \frac{k(2j+k-1)}{2}}[k]_{q}!f^{(k)}(\xi )}{k![n]_{q}^{k}}\), we have
$$\begin{aligned} \triangle_{q}^{k}g_{0}=\triangle_{q}^{k}f_{0}+ \frac{q^{n-1-k}[k]_{q}}{[n-1]_{q}}\triangle_{q}^{k}f_{1},\quad\quad \triangle_{q}^{k}f_{0}=\frac{q^{\frac{k(k-1)}{2}}[k]_{q}!}{[n]_{q} ^{k}},\quad\quad \triangle_{q}^{k}f_{1}=\frac{q^{\frac{k(k+1)}{2}}[k]_{q}!}{[n]_{q} ^{k}}. \end{aligned}$$
Thus, we obtain
$$\begin{aligned} \triangle_{q}^{k}g_{0}= \biggl( 1+ \frac{q^{n-1}[k]_{q}}{[n-1]_{q}} \biggr) \frac{q ^{\frac{k(k-1)}{2}}[k]_{q}!}{[n]_{q}^{k}}= \frac{[n-1+k]_{q}}{[n-1]_{q}} \frac{q^{\frac{k(k-1)}{2}}[k]_{q}!}{[n]_{q} ^{k}}. \end{aligned}$$
Hence, using (8), we have
a k = [ ( 1 α ) [ n 1 k ] q [ n 1 + k ] q [ n 1 ] q + α [ n k ] q ] q k ( k 1 ) 2 [ k ] q ! [ n ] q k .
We then obtain the proof of Lemma 2.5 by simple computations. □
Lemma 2.6
The following equalities hold true:
$$\begin{aligned}& T_{n,q,\alpha } \bigl( t^{2};x \bigr) =x^{2}+ \frac{x(1-x)}{[n]_{q}}+\frac{(1- \alpha )q^{n-1}[2]_{q}x(1-x)}{[n]_{q}^{2}}, \end{aligned}$$
(10)
$$\begin{aligned}& T_{n,q,\alpha } \bigl( (t-x)^{2};x \bigr) =\frac{x(1-x)}{[n]_{q}}+ \frac{(1- \alpha )q^{n-1}[2]_{q}x(1-x)}{[n]_{q}^{2}}. \end{aligned}$$
(11)
Proof
For \(f(t)=t^{2}\), we have \(\triangle_{q}^{0}f_{0}=f_{0}=0\), \(\triangle_{q}^{1}f_{0}=f_{1}-f_{0}=\frac{1}{[n]_{q}^{2}}\), \(\triangle_{q}^{1}f_{1}=f_{2}-f_{1}=\frac{2q+q^{2}}{[n]_{q}^{2}}\), \(\triangle_{q}^{2}f_{0}=\triangle_{q}^{1}f_{1}-q\triangle_{q}^{1}f _{0}=f_{2}-[2]_{q}f_{1}+qf_{0}=\frac{q[2]_{q}}{[n]_{q}^{2}}\), and \(\triangle_{q}^{2}f_{1}=f_{3}-[2]_{q}f_{2}+qf_{1}=\frac{q^{3}+q^{4}}{[n]_{q} ^{2}}\). By (9), we have \(\triangle_{q}^{0}g_{0}=0\), and
$$\begin{aligned}& \triangle_{q}^{1}g_{0}=\triangle_{q}^{1}f_{0}+ \frac{q^{n-2}}{[n-1]_{q}}\triangle_{q}^{1}f_{1}= \frac{1}{[n]_{q}^{2}}+\frac{2q ^{n-1}+q^{n}}{[n-1]_{q}[n]_{q}^{2}}, \\& \triangle_{q}^{2}g_{0}=\triangle_{q}^{2}f_{0}+ \frac{q^{n-3}[2]_{q}}{[n-1]_{q}}\triangle_{q}^{2}f_{1}= \frac{q[2]_{q}}{[n]_{q} ^{2}}+\frac{[2]_{q} ( q^{n}+q^{n+1} ) }{[n-1]_{q}[n]_{q}^{2}}. \end{aligned}$$
From (8), we have
$$\begin{aligned}& T_{n,q,\alpha } \bigl( t^{2};x \bigr) \\& \quad = (1-\alpha )\triangle_{q}^{0}g_{0}+\alpha \triangle_{q}^{0}f_{0}+ \bigl[ (1-\alpha )[n-1]_{q}\triangle_{q}^{1}g_{0}+ \alpha [n]_{q} \triangle_{q}^{1}f_{0} \bigr] x \\& \quad \quad {} + \biggl[ (1-\alpha )\frac{[n-1]_{q}[n-2]_{q}}{[2]_{q}}\triangle_{q} ^{2}g_{0}+\alpha \frac{[n]_{q}[n-1]_{q}}{[2]_{q}}\triangle_{q}^{2}f _{0} \biggr] x^{2} \\& \quad = \biggl[ \frac{(1-\alpha )[n-1]_{q}}{[n]_{q}^{2}}+\frac{(1-\alpha ) ( 2q^{n-1}+q^{n} ) }{[n]_{q}^{2}}+\frac{\alpha }{[n]_{q}} \biggr] x \\& \quad \quad {} + \biggl[ \frac{(1-\alpha )q[n-1]_{q}[n-2]_{q}}{[n]_{q}^{2}}+\frac{(1- \alpha )[n-2]_{q} ( q^{n}+q^{n+1} ) }{[n]_{q}^{2}}+\frac{ \alpha q[n-1]_{q}}{[n]_{q}} \biggr] x^{2} \\& \quad = \frac{[n]_{q}+(1-\alpha )q^{n-1}[2]_{q}}{[n]_{q}^{2}}x+ \biggl( 1- \frac{1}{[n]_{q}}-\frac{(1-\alpha )q^{n-1}[2]_{q}}{[n]_{q}^{2}} \biggr) x ^{2} \\& \quad = x^{2}+\frac{x(1-x)}{[n]_{q}}+\frac{(1-\alpha )q^{n-1}[2]_{q}x(1-x)}{[n]_{q} ^{2}}. \end{aligned}$$
Hence, (10) is proved. Finally, using Lemma 2.1, we obtain
$$ T_{n,q,\alpha } \bigl( (t-x)^{2};x \bigr) =T_{n,q,\alpha } \bigl( t^{2};x \bigr) -2xT _{n,q,\alpha }(t;x)+x^{2}T_{n,q,\alpha }(1;x)=T_{n,q,\alpha } \bigl( t ^{2};x \bigr) -x^{2}. $$
Then (11) is proved by (10). This completes the proof of Lemma 2.6. □

3 Convergence properties

We now state the well-known Bohman–Korovkin theorem, followed by a proof based on that given by Cheney [23].
Theorem 3.1
Let \(\{L_{n}\}\) denote a sequence of monotone linear operators that map a function \(f\in C[a,b]\) to a function \(L_{n}f\in C[a,b]\), and let \(L_{n}f\rightarrow f\) uniformly on \([a,b]\) for \(f=1, t\) and \(t^{2}\). Then \(L_{n}f\rightarrow f\) uniformly on \([a,b]\) for all \(f\in C[a,b]\).
Theorem 3.1 leads to the following theorem on the convergence of \((\alpha , q)\)-Bernstein operators.
Theorem 3.2
Let \(q:=\{q_{n}\}\) denote a sequence such that \(q_{n}\in (0,1)\) and \(\lim_{n\rightarrow \infty }q_{n}=1\). Then, for any \(f\in C[0,1]\) and \(\alpha \in [0,1]\), \(T_{n,q,\alpha }(f;x)\) converges uniformly to \(f(x)\) on \([0,1]\).
Proof
From Lemma 2.1, we see that \(T_{n,q,\alpha }(f;x)=f(x)\) for \(f(t)=1\) and \(f(t)=t\). Since \(\lim_{n\rightarrow \infty }q_{n}=1\), we see from (10) that \(T_{n,q,\alpha }(f;x)\) converges uniformly to \(f(x)\) for \(f(t)=t^{2}\) as \(n\rightarrow \infty \). It also follows that \(T_{n,q,\alpha }\) is a monotone operator by Lemma 2.3; the proof is then completed by applying the Bohman–Korovkin theorem 3.1. □
As we know, the space \(C{[0,1]}\) of all continuous functions on \([0,1]\) is a Banach space with sup-norm \(\Vert f \Vert :=\sup_{x\in [0,1]} \vert f(x) \vert \). Letting \(f\in C{[0,1]}\), the Peetre K functional is defined by \(K_{2}(f;\delta ):=\inf_{g\in C^{2}{[0,1]}} \{ \Vert f-g \Vert +\delta \Vert g'' \Vert \}\), where \(\delta >0\) and \(C^{2}{[0,1]}:=\{g \in C{[0,1]}: g', g''\in C{[0,1]}\}\). By [24], there exists an absolute constant \(C>0\), such that
$$ K_{2}(f;\delta )\leq C\omega_{2} ( f;\sqrt{\delta } ) , $$
(12)
where \(\omega_{2}(f;\delta ):=\sup_{0< h\leq \delta } \sup_{x,x+h,x+2h\in [0,1]} \vert f(x+2h)-2f(x+h)+f(x) \vert \) is the second-order modulus of smoothness of \(f\in C{[0,1]}\).
Theorem 3.3
For \(f\in C{[0,1]}\), \(\alpha \in [0,1]\), \(q\in (0,1)\), we have
$$\begin{aligned} \bigl\vert T_{n,q,\alpha }(f;x)-f(x) \bigr\vert \leq C\omega_{2} \biggl( f;\frac{\sqrt{2[n]_{q}+(1- \alpha )2[2]_{q}q^{n-1}}}{4[n]_{q}} \biggr) , \end{aligned}$$
where C is a positive constant.
Proof
Letting \(g\in C^{2}{[0,1]}\), \(x,t\in [0,1]\), by Taylor’s expansion we have
$$\begin{aligned} g(t)=g(x)+g'(x) (t-x)+ \int_{x}^{t}(t-u)g''(u) \,du. \end{aligned}$$
Using Lemma 2.1, we obtain
$$\begin{aligned} T_{n,q,\alpha }(g;x)=g(x)+T_{n,q,\alpha } \biggl( \int_{x}^{t}(t-u)g''(u) \,du;x \biggr) . \end{aligned}$$
Thus, we have
$$\begin{aligned} \bigl\vert T_{n,q,\alpha }(g;x)-g(x) \bigr\vert =& \biggl\vert T_{n,q,\alpha } \biggl( \int _{x}^{t}(t-u)g''(u) \,du;x \biggr) \biggr\vert \\ \leq &T_{n,q,\alpha } \biggl( \biggl\vert \int_{x}^{t}(t-u) \bigl\vert g''(u) \bigr\vert \,du \biggr\vert ;x \biggr) \\ \leq &T_{n,q,\alpha } \bigl( (t-x)^{2};x \bigr) \bigl\Vert g'' \bigr\Vert \\ \leq &\frac{[n]_{q}+(1-\alpha )q^{n-1}[2]_{q}}{4[n]_{q}^{2}} \bigl\Vert g'' \bigr\Vert . \end{aligned}$$
(13)
However, using Lemma 2.1, we have
$$\begin{aligned} \bigl\vert T_{n,q,\alpha }(f;x) \bigr\vert \leq \Vert f \Vert . \end{aligned}$$
(14)
Now, (13) and (14) imply
$$\begin{aligned} \bigl\vert T_{n,q,\alpha }(f;x)-f(x) \bigr\vert \leq & \bigl\vert T_{n,q,\alpha }(f-g;x)-(f-g) (x) \bigr\vert + \bigl\vert T_{n,q,\alpha }(g;x)-g(x) \bigr\vert \\ \leq &2 \Vert f-g \Vert + \frac{[n]_{q}+(1-\alpha )q^{n-1}[2]_{q}}{4[n]_{q}^{2}} \bigl\Vert g'' \bigr\Vert . \end{aligned}$$
Hence, taking the infimum on the right-hand side over all \(g\in C^{2} {[0,1]}\), we obtain
$$\begin{aligned} \bigl\vert T_{n,q,\alpha }(f;x)-f(x) \bigr\vert \leq 2K_{2} \biggl( f;\frac{[n]_{q}+(1- \alpha )q^{n-1}[2]_{q}}{8[n]_{q}^{2}} \biggr) . \end{aligned}$$
By (12), we obtain
$$\begin{aligned} \bigl\vert T_{n,q,\alpha }(f;x)-f(x) \bigr\vert \leq C\omega_{2} \biggl( f;\frac{\sqrt{2[n]_{q}+(1- \alpha )2[2]_{q}q^{n-1}}}{4[n]_{q}} \biggr) , \end{aligned}$$
where C is a positive constant. Theorem 3.3 is proved. □
Remark 3.4
Letting \(q:=\{q_{n}\}\) denote a sequence such that \(q_{n}\in (0,1)\) and \(\lim_{n\rightarrow \infty }q_{n}=1\), we know that, under the conditions of theorem 3.3, the convergence rate of the operators \(T_{n,q, \alpha }(f)\) to f is \(1/\sqrt{[n]_{q}}\) as \(n\rightarrow \infty \). This convergence rate can be improved depending on the choice of q, at least as fast as \(1/\sqrt{n}\).
Example 3.5
Letting \(f(x) = 1 - \cos(4e^{x})\), the graphs of \(f(x)\) and \(T_{n,q,0.9}(f;x)\) with different values of n and q are shown in Fig. 1. Figure 2 shows the graphs of \(f(x)\) and \(T_{10,0.9,\alpha }(f;x)\) with \(\alpha =0.6\) and \(\alpha =0.9\).

4 Shape-preserving properties

The \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\) have a monotonicity-preserving property.
Theorem 4.1
Let \(f\in C{[0,1]}\). If f is a monotonically increasing or monotonically decreasing function on \([0,1]\), so are all its \((\alpha , q)\)-Bernstein operators for fixed \(q\in (0,1)\) and \(\alpha \in [0,1]\).
Proof
From (5), we have
T n + 1 , q , α ( f ; x ) = ( 1 α ) i = 0 n g i [ n i ] q x i ( 1 x ) q n i + α i = 0 n + 1 f i [ n + 1 i ] q x i ( 1 x ) q n + 1 i ,
where \(f_{i}=\frac{[i]_{q}}{[n+1]_{q}}\), \(g_{i}= ( 1- \frac{q^{n-i}[i]_{q}}{[n]_{q}} ) f_{i}+ \frac{q^{n-i}[i]_{q}}{[n]_{q}}f_{i+1}\). Then the q derivative of \(T_{n+1,q,\alpha }(f;x)\) is
D q [ T n + 1 , q , α ( f ; x ) ] = ( 1 α ) i = 0 n g i [ n i ] q D q [ x i ( 1 x ) q n i ] + α i = 0 n + 1 f i [ n + 1 i ] q D q [ x i ( 1 x ) q n + 1 i ] ,
and we denote the first and second parts of the right-hand side of the last equation by \(\Lambda_{1}\) and \(\Lambda_{2}\), respectively. We then have
Λ 1 = ( 1 α ) i = 0 n g i [ n i ] q [ [ i ] q x i 1 ( 1 q x ) q n i [ n i ] q x i ( 1 q x ) q n i 1 ] = ( 1 α ) [ n ] q [ i = 1 n g i [ n 1 i 1 ] q x i 1 ( 1 q x ) q n i i = 0 n 1 g i [ n 1 i ] q x i ( 1 q x ) q n i 1 ] = ( 1 α ) [ n ] q i = 0 n 1 [ n 1 i ] q x i ( 1 q x ) q n i 1 q 1 g i .
Using (9), we obtain
$$\begin{aligned} \triangle_{q}^{1}g_{i}= \biggl( 1- \frac{q^{n-i}[i]_{q}}{[n]_{q}} \biggr) \triangle_{q}^{1}f_{i}+ \frac{q^{n-i-1}[i+1]}{[n]_{q}}\triangle_{q} ^{1}f_{i+1}. \end{aligned}$$
Thus, we have
Λ 1 = ( 1 α ) i = 0 n 1 [ ( [ n ] q q n i [ i ] q ) q 1 f i + q n i 1 [ i + 1 ] q q 1 f i + 1 ] [ n 1 i ] q × x i ( 1 q x ) q n i 1 .
(15)
Similarly, we can obtain
Λ 2 = α [ n + 1 ] q i = 0 n [ n i ] q x i ( 1 q x ) q n i q 1 f i .
(16)
Therefore, by using (15) and (16), the derivative of \(( \alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\) may be expressed in the form
D q [ T n , q , α ( f ; x ) ] = ( 1 α ) i = 0 n 1 [ ( [ n ] q q n i [ i ] q ) q 1 f i + q n i 1 [ i + 1 ] q q 1 f i + 1 ] [ n 1 i ] q × x i ( 1 q x ) q n i 1 + α [ n + 1 ] q i = 0 n [ n i ] q x i ( 1 q x ) q n i q 1 f i .
Since if f is monotonically increasing on \([0,1]\), the forward differences \(\triangle_{q}^{1}f_{i}\) and \(\triangle_{q}^{1}f_{i+1}\) are non-negative, and so is \(D_{q} [ T_{n,q,\alpha }(f;x) ] \). Hence, \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\) are monotonically increasing on \([0,1]\) for fixed \(q\in (0,1)\) and \(\alpha \in [0,1]\). On the contrary, if f is monotonically decreasing on \([0,1]\), then operators \(T_{n,q,\alpha }(f;x)\) are monotonically decreasing on \([0,1]\) for fixed \(q\in (0,1)\) and \(\alpha \in [0,1]\). Theorem 4.1 is proved. □
The \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\) have a convexity-preserving property
Theorem 4.2
Let \(f\in C{[0,1]}\). If f is convex on \([0,1]\), so are all of its \(( \alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\) for fixed \(q\in (0,1)\) and \(\alpha \in [0,1]\).
Proof
From (5), we obtain
T n + 2 , q , α ( f ; x ) = ( 1 α ) i = 0 n + 1 g i [ n + 1 i ] q x i ( 1 x ) q n i + 1 + α i = 0 n + 2 f i [ n + 2 i ] q x i ( 1 x ) q n + 2 i ,
where \(f_{i}=\frac{[i]_{q}}{[n+2]_{q}}\), \(g_{i}= ( 1- \frac{q^{n-i+1}[i]_{q}}{[n+1]_{q}} ) f_{i}+ \frac{q^{n-i+1}[i]_{q}}{[n+1]_{q}}f_{i+1}\). The q-derivative of \(T_{n+2,q,\alpha }(f;x)\) can easily obtained by the proof theorem 4.1, which may be expressed as
D q [ T n + 2 , q , α ( f ; x ) ] = ( 1 α ) [ n + 1 ] q i = 0 n [ n i ] q x i ( 1 q x ) q n i ( g i + 1 g i ) + α [ n + 2 ] q i = 0 n + 1 [ n + 1 i ] q x i ( 1 q x ) q n i + 1 ( f i + 1 f i ) .
Then we have
D q 2 [ T n + 2 , q , α ( f ; x ) ] = ( 1 α ) [ n + 1 ] q i = 0 n [ n i ] q ( g i + 1 g i ) D q [ x i ( 1 q x ) q n i ] + α [ n + 2 ] q i = 0 n + 1 [ n + 1 i ] q ( f i + 1 f i ) D q [ x i ( 1 q x ) q n i 1 ] .
By some easy computations, we obtain
D q 2 [ T n + 2 , q , α ( f ; x ) ] = ( 1 α ) [ n + 1 ] q [ n ] q i = 0 n 1 [ n 1 i ] q x i ( 1 q 2 x ) q n i 1 q 2 g i + α [ n + 2 ] q [ n + 1 ] q i = 0 n [ n i ] q x i ( 1 q 2 x ) q n i q 2 f i ,
where \(\triangle_{q}^{2}g_{i}= ( 1- \frac{q^{n-i+1}[i]_{q}}{[n+1]_{q}} ) \triangle_{q}^{2}f_{i}+\frac{q ^{n-i-1}[i+2]_{q}}{[n+1]_{q}}\triangle_{q}^{2}f_{i+1}\). By the connection between the second-order q differences and convexity, we know that \(\triangle_{q}^{2}f_{i}\) and \(\triangle_{q}^{2}f_{i+1}\) are all non-negative since f is convex on \([0,1]\). Hence, we obtain \(D_{q}^{2} [ T_{n+2,q,\alpha }(f;x) ] \geq 0\), and then the convexity-preserving property of \(T_{n,q,\alpha }(f;x)\). Theorem 4.2 is proved. □
Next, if \(f(x)\) is convex, the \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f;x)\), for n fixed, are monotonic in q.
Theorem 4.3
For \(0< q_{1}\leq q_{2}\leq 1\), \(\alpha \in [0,1]\) and for \(f(x)\) convex on \([0,1]\), then \(T_{n,q_{2},\alpha }(f;x)\leq T_{n,q_{1},\alpha }(f;x)\).
Proof
In the following main proof of our results, we must introduce a linear polynomial function:
$$\begin{aligned} g(x)=\frac{f_{i+1}-f_{i}}{\frac{[i+1]_{q}}{[n]_{q}}- \frac{[i]_{q}}{[n]_{q}}} \biggl( x-\frac{[i]_{q}}{[n]_{q}} \biggr) +f_{i}, \end{aligned}$$
(17)
where \(\frac{[i]_{q}}{[n]_{q}}\leq x<\frac{[i+1]_{q}}{[n]_{q}}\), \(f _{i}=f ( \frac{[i]_{q}}{[n]_{q}} ) \), \(i=0,\ldots,n-1\). Then it is straightforward to check that \(g_{i}=g ( \frac{[i]_{q}}{[n-1]_{q}} ) \). Since f is convex on \([0,1]\), the intrinsic linear polynomial function \(g(x)\) must be convex on \([0,1]\) as well. Therefore, by the classical results of q-Bernstein operators (see [3]), we note that
$$\begin{aligned} T_{n,q,\alpha }(f;x)=(1-\alpha )B_{n-1}^{q}(g;x)+\alpha B_{n}^{q}(f;x). \end{aligned}$$
(18)
We have \(B_{n-1}^{q_{2}}(g;x)\leq B_{n-1}^{q_{1}}(g;x)\) and \(B_{n}^{q_{2}}(f;x)\leq B_{n}^{q_{1}}(f;x)\), and the desired result is obvious. Theorem 4.3 is proved. □
Finally, if \(f(x)\) is convex, we give the monotonicity of \((\alpha , q)\)-Bernstein operators \(T_{n,q,\alpha }(f; x)\) with n.
Theorem 4.4
If \(f(x)\) is convex on \([0,1]\), for fixed \(q\in (0,1)\) and \(\alpha \in [0,1]\), we have
$$\begin{aligned} T_{n-1,q,\alpha }(f;x)-T_{n,q,\alpha }(f;x)\geq 0\quad (n\geq 2). \end{aligned}$$
Proof
Combining (17) and (18), and the fact that if f and g are convex on \([0,1]\), then
$$\begin{aligned} B_{n-2}^{q}(g;x)\geq B_{n-1}^{q}(g;x), \quad\quad B_{n-1}^{q}(f;x)\geq B_{n}^{q}(f;x) \end{aligned}$$
(see [25]). The desired result is obvious. □
Example 4.5
Letting the convex function \(f(x) = 1 - \sin(\pi x)\), \(x\in [0,1]\), the graphs of \(f(x)\) and \(T_{n,0.9,0.9}(f;x)\) with different values of \(n=10, 15, 20, 30\) are shown in Fig. 3. Figure 4 shows the graphs of \(f(x) = 1 - \sin(\pi x)\) and \(T_{10,q,0.9}(f;x)\) with \(q=0.6, 0.7, 0.8, 0.9\).

5 Conclusion

In this paper, we proposed a new family of generalized Bernstein operators, named \((\alpha , q)\)-Bernstein operators, and denoted by \(T_{n,q,\alpha }(f)\). We study the rate of convergence of these operators, investigate their monotonicity-, convexity-preserving properties with respect to \(f(x)\), and also obtain their monotonicity with n and q of \(T_{n,q,\alpha }(f)\).

Acknowledgements

We thank Fujian Provincial Key Laboratory of Data Intensive Computing and Key Laboratory of Intelligent Computing and Information Processing of Fujian Province University.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that there have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Lupaş, A.: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus 9, University of Cluj-Napoca (1997) Lupaş, A.: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus 9, University of Cluj-Napoca (1997)
2.
go back to reference Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997) MathSciNetMATH Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997) MathSciNetMATH
3.
go back to reference Goodman, T.N.T., Oruç, H., Phillips, G.M.: Convexity and generalized Bernstein polynomial. Proc. Edinb. Math. Soc. 42, 179–190 (1999) MathSciNetCrossRef Goodman, T.N.T., Oruç, H., Phillips, G.M.: Convexity and generalized Bernstein polynomial. Proc. Edinb. Math. Soc. 42, 179–190 (1999) MathSciNetCrossRef
4.
go back to reference Nowak, G.: Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl. 350, 50–55 (2009) MathSciNetCrossRef Nowak, G.: Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl. 350, 50–55 (2009) MathSciNetCrossRef
5.
6.
go back to reference Wang, H., Meng, F.: The rate of convergence of q-Bernstein polynomials. J. Approx. Theory 136, 151–158 (2005) MathSciNetCrossRef Wang, H., Meng, F.: The rate of convergence of q-Bernstein polynomials. J. Approx. Theory 136, 151–158 (2005) MathSciNetCrossRef
7.
go back to reference Gupta, V., Finta, Z.: On certain q-Durrmeyer type operators. Appl. Math. Comput. 209, 415–420 (2009) MathSciNetMATH Gupta, V., Finta, Z.: On certain q-Durrmeyer type operators. Appl. Math. Comput. 209, 415–420 (2009) MathSciNetMATH
8.
go back to reference Gupta, V.: Some approximation properties of q-Durrmeyer operators. Appl. Math. Comput. 197, 172–178 (2008) MathSciNetMATH Gupta, V.: Some approximation properties of q-Durrmeyer operators. Appl. Math. Comput. 197, 172–178 (2008) MathSciNetMATH
9.
go back to reference Gupta, V., Wang, H.: The rate of convergence of q-Durrmeyer operators for \(0< q<1\). Math. Methods Appl. Sci. 31, 1946–1955 (2008) MathSciNetCrossRef Gupta, V., Wang, H.: The rate of convergence of q-Durrmeyer operators for \(0< q<1\). Math. Methods Appl. Sci. 31, 1946–1955 (2008) MathSciNetCrossRef
10.
go back to reference Mursaleen, M., Khan, F., Khan, A.: Approximation properties for King’s type modified q-Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 36(9), 1178–1197 (2015) MathSciNetMATH Mursaleen, M., Khan, F., Khan, A.: Approximation properties for King’s type modified q-Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 36(9), 1178–1197 (2015) MathSciNetMATH
11.
go back to reference Agrawal, P.N., Finta, Z., Kumar, A.S.: Bernstein–Schurer–Kantorovich operators based on q-integers. Appl. Math. Comput. 256, 222–231 (2015) MathSciNetMATH Agrawal, P.N., Finta, Z., Kumar, A.S.: Bernstein–Schurer–Kantorovich operators based on q-integers. Appl. Math. Comput. 256, 222–231 (2015) MathSciNetMATH
12.
go back to reference Dalmanog̃lu, Ö., Dog̃ru, O.: On statistical approximation properties of Kantorovich type q-Bernstein operators. Math. Comput. Model. 52, 760–771 (2010) MathSciNetCrossRef Dalmanog̃lu, Ö., Dog̃ru, O.: On statistical approximation properties of Kantorovich type q-Bernstein operators. Math. Comput. Model. 52, 760–771 (2010) MathSciNetCrossRef
13.
go back to reference Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, New York (1993) MATH Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, New York (1993) MATH
14.
go back to reference Oruç, H., Phillips, G.M.: q-Bernstein polynomials and Bézier curves. J. Comput. Appl. Math. 151, 1–12 (2003) MathSciNetCrossRef Oruç, H., Phillips, G.M.: q-Bernstein polynomials and Bézier curves. J. Comput. Appl. Math. 151, 1–12 (2003) MathSciNetCrossRef
15.
go back to reference Dişibüyük, Ç., Oruç, H.: A generalization of rational Bernstein–Bézier curves. BIT Numer. Math. 47, 313–323 (2007) CrossRef Dişibüyük, Ç., Oruç, H.: A generalization of rational Bernstein–Bézier curves. BIT Numer. Math. 47, 313–323 (2007) CrossRef
16.
17.
go back to reference Simeonov, P., Zafiris, V., Goldman, R.N.: q-Blossoming: a new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164, 77–104 (2012) MathSciNetCrossRef Simeonov, P., Zafiris, V., Goldman, R.N.: q-Blossoming: a new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164, 77–104 (2012) MathSciNetCrossRef
18.
go back to reference Han, L.W., Chu, Y., Qiu, Z.Y.: Generalized Bézier curves and surfaces based on Lupaş q-analogue of Bernstein operator. J. Comput. Appl. Math. 261, 352–363 (2014) MathSciNetCrossRef Han, L.W., Chu, Y., Qiu, Z.Y.: Generalized Bézier curves and surfaces based on Lupaş q-analogue of Bernstein operator. J. Comput. Appl. Math. 261, 352–363 (2014) MathSciNetCrossRef
19.
20.
go back to reference Chen, X., Tan, J., Liu, Z., Xie, J.: Approximation of functions by a new family of generalized Bernstein operators. J. Math. Anal. Appl. 450, 244–261 (2017) MathSciNetCrossRef Chen, X., Tan, J., Liu, Z., Xie, J.: Approximation of functions by a new family of generalized Bernstein operators. J. Math. Anal. Appl. 450, 244–261 (2017) MathSciNetCrossRef
21.
go back to reference Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, vol. 35. Cambridge University Press, Cambridge (1990) MATH Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, vol. 35. Cambridge University Press, Cambridge (1990) MATH
22.
go back to reference Kac, V.G., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002) CrossRef Kac, V.G., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002) CrossRef
23.
go back to reference Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966) MATH Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966) MATH
24.
go back to reference DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993) CrossRef DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993) CrossRef
25.
go back to reference Oruç, H., Phillips, G.M.: A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc. 42, 403–413 (1999) MathSciNetCrossRef Oruç, H., Phillips, G.M.: A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc. 42, 403–413 (1999) MathSciNetCrossRef
Metadata
Title
Shape-preserving properties of a new family of generalized Bernstein operators
Authors
Qing-Bo Cai
Xiao-Wei Xu
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1821-9

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner