Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Fractional Hermite–Hadamard inequalities for \((s,m)\)-convex or s-concave functions

Authors: Tieyan Lian, Wei Tang, Rui Zhou

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this article, fractional integral is considered. Some new upper bounds of the distance between the middle and left of Hermite–Hadamard type inequalities for fractional integrals are established for \((s,m)\)-convex or s-concave functions.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let R be the set of real numbers, \(I \subset\mathbf{R}\), \(I^{o}\) be the interior of I. The following is the definition of convex functions which is well-known knowledge in mathematical literature: \(f:I \rightarrow\mathbf{R}\) is said to be convex if the inequality
$$ f\bigl(\lambda x+(1-\lambda)y\bigr)\leq\lambda f(x)+(1-\lambda)f(y) $$
(1.1)
holds for all \(x,y\in I\) and \(\lambda\in[0,1]\). We say that f is concave if −f is convex.
For a convex function, many equalities or inequalities have been established, but Hermite–Hadamard’s integral inequality is one of the most important ones, which is stated as follows [1]:
If \(f:I \rightarrow\mathbf{R}\) is a convex function on I and \(a,b\in I\) with \(a< b\), then
$$ f \biggl( \frac{a+b}{2} \biggr) \leq\frac{1}{b-a} \int^{b}_{a} f(x)\,dx \leq\frac{f(a)+f(b)}{2} $$
(1.2)
holds. Both the inequalities hold in the reversed direction if f is concave.
Inequality (1.2) has been a subject of extensive research since its discovery, and a number of papers have been written providing noteworthy extensions, generalizations, and refinements for some new class of convex functions.
For example, Orlicz [2] introduced the definition for s-convexity of real-valued mappings.
In [3], Hudzik and Maligranda showed the class of mappings which are s-convex in the second sense in the following way: A mapping \(f:I\subseteq\mathbf{R}^{+}=[0,\infty)\rightarrow\mathbf{R}\) is said to be s-convex in the second sense on I if the inequality
$$ f\bigl(tx+(1-t)y\bigr)\leq t^{s}f(x)+(1-t)^{s}f(y) $$
(1.3)
holds for all \(x,y\in I\) and for some fixed \(s\in(0,1]\).
Inequality (1.3) holds in the reversed direction if f is s-concave in the second sense.
In [4], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality for functions which are s-convex in the second sense.
Theorem 1.1
([4])
Suppose that \(f:I\subseteq \mathbf{R}^{+}\rightarrow\mathbf{R}\) is s-convex in the second sense on I, where \(s\in(0,1]\), and let \(a,b\in I\) with \(a< b\). If f is in \(L([a,b])\), then the following double inequality holds:
$$ 2^{s-1}f\biggl(\frac{a+b}{2}\biggr)\leq\frac{1}{b-a} \int_{a}^{b}f(x)\,dx\leq \frac{f(a)+f(b)}{s+1}. $$
(1.4)
Both inequalities (1.4) hold in the reversed direction if f is s-concave in the second sense.
In a recent paper, Eftekhari [5] defined the class of \((s,m)\)-convex functions in the second sense as follows: A mapping \(f:I\subseteq\mathbf{R}^{+}=[0,\infty)\rightarrow\mathbf{R}\) is said to be \((s,m)\)-convex in the second sense on I if the inequality
$$f\bigl(tx+m(1-t)y\bigr)\leq t^{s}f(x)+m(1-t)^{s}f(y) $$
holds for all \(x,y\in I\) and for some fixed \((s,m)\in(0,1]^{2}\).
It is easy to observe that for \(m=1\), the class of \((s,m)\)-convex in the second sense is merely the class of s-convex mappings in the second sense defined on \([0,\infty)\).
Our results generalize the following results which are connected with the left-hand side of (1.2).
Lemma 1.1
([4])
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\), then the following equality holds:
$$ \begin{aligned}[b] &f \biggl( \frac{a+b}{2} \biggr) - \frac{1}{b-a} \int_{a}^{b}f(t)\,dt \\ &\quad =\frac{b-a}{4} \biggl[ \int_{0}^{1}tf' \biggl( t \frac{a+b}{2}+(1-t)a \biggr) \,dt+ \int_{0}^{1}(t-1)f' \biggl( t \frac{a+b}{2}+(1-t)b \biggr) \,dt \biggr] . \end{aligned} $$
(1.5)
Theorem 1.2
([5])
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\). If \(\vert f'\vert \) is \((s,m)\)-convex in the second sense on \([a,b]\) for \((s,m)\in(0,1]^{2}\), then the following inequality holds:
$$ \begin{aligned}[b] & \biggl\vert f \biggl( \frac{a+b}{2} \biggr) -\frac{1}{b-a} \int _{a}^{b}f(t)\,dt \biggr\vert \\ &\quad \leq \frac{b-a}{4(s+2)} \biggl[ 2 \biggl\vert f' \biggl( \frac{a+b}{2} \biggr) \biggr\vert + \frac{m}{s+1} \biggl( \biggl\vert f'\biggl(\frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac {b}{m}\biggr) \biggr\vert \biggr) \biggr] . \end{aligned} $$
(1.6)
In [6], in terms of \((s,m)\)-convex functions in the second sense, Sarikaya et al. established Hermite–Hadamard’s inequalities for Riemann–Liouville fractional integral. Furthermore, some results connected with the right-hand side of (1.2) were obtained for Riemann–Liouville fractional integral.
Different from [6], our aim of this work is to establish some upper bounds to the left-hand side of (1.2) for Riemann–Liouville fractional integral. When we take appropriate parameters, we can get (1.5) and (1.6).
To get our main results, we will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper. For more details, one can consult [79].
Definition 1.1
([7])
Let \(f\in L_{1}[a,b]\). The Riemann–Liouville integrals \(J_{a^{+}}^{\alpha}f\) and \(J_{b^{-}} ^{\alpha}f\) of order \(\alpha>0\) with \(a\geq0\) are defined by
$$\begin{aligned}& J_{a^{+}}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{ \alpha-1}f(t)\,dt,\quad x>a, \\ & J_{b^{-}}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{ \alpha-1}f(t)\,dt,\quad x< b, \end{aligned}$$
respectively. Here, \(\Gamma(\alpha)\) is the gamma function and \(J_{a^{+}}^{0}f(x)=J_{b^{-}}^{0 }f(x)=f(x)\).

2 Main results

For establishing some new fractional integral inequalities of Hermite–Hadamard type for m-convex or \((s,m)\)-convex functions, we need the fractional integral identity below.
Lemma 2.1
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\), then the following equality holds:
$$ \begin{aligned}[b] & f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl(\frac{2}{a-b}\biggr)^{ \alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a) -\biggl(\frac{2}{b-a}\biggr)^{ \alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \\ &\quad =\frac{b-a}{4} \biggl[ \int_{0}^{1}t^{\alpha}f'\biggl(t{ \frac{a+b}{2}}+(1-t)a\biggr)\,dt- \int_{0}^{1}t^{\alpha}f'\biggl(t{ \frac{a+b}{2}}+(1-t)b\biggr)\,dt \biggr] . \end{aligned} $$
(2.1)
Proof
First of all, let
$$\begin{aligned}& \frac{b-a}{4} \biggl[ \int_{0}^{1}t^{\alpha}f'\biggl(t{ \frac{a+b}{2}}+(1-t)a\biggr)\,dt- \int_{0}^{1}t^{\alpha}f'\biggl(t{ \frac{a+b}{2}}+(1-t)b\biggr)\,dt \biggr] \\ & \quad = \frac{b-a}{4}(I_{1}-I_{2}). \end{aligned}$$
(2.2)
By integration by parts and making use of the substitution \(u=t{\frac{a+b}{2}}+(1-t)a\), we have
$$\begin{aligned} I_{1}&= \int_{0}^{1}t^{\alpha}f'\biggl(t{ \frac{a+b}{2}}+(1-t)a\biggr)\,dt \\ & =\biggl(\frac{2}{b-a}\biggr)^{\alpha+1} \int_{a}^{\frac{a+b}{2}}(u-a)^{\alpha-1}f'(u)\,du \\ & =\biggl(\frac{2}{b-a}\biggr)^{\alpha+1}\biggl[\biggl( \frac{b-a}{2}\biggr)^{\alpha}f\biggl(\frac{a+b}{2}\biggr)- \alpha \int_{a}^{\frac{a+b}{2}}(u-a)^{\alpha-1}f(u)\,du\biggr] \\ & =\frac{2}{b-a}f\biggl(\frac{a+b}{2}\biggr)+\alpha\biggl( \frac{2}{a-b}\biggr)^{\alpha+1} \int_{\frac{a+b}{2}}^{a}(a-u)^{\alpha-1}f(u)\,du \\ & =\frac{2}{b-a}f\biggl(\frac{a+b}{2}\biggr)+\Gamma(\alpha+1) \biggl( \frac{2}{a-b}\biggr)^{ \alpha+1}J_{(\frac{a+b}{2})^{+}}^{\alpha}f(a). \end{aligned}$$
(2.3)
Analogously, by using the partial integral method and variable substitution, the following equality holds:
$$ \begin{aligned}[b] & I_{2}= \int_{0}^{1}t^{\alpha}f'\biggl(t{ \frac{a+b}{2}}+(1-t)b\biggr)\,dt \\ &\quad =-\frac{2}{b-a}f\biggl(\frac{a+b}{2}\biggr)+\Gamma(\alpha+1) \biggl(\frac{2}{b-a}\biggr)^{ \alpha+1}J_{(\frac{a+b}{2})^{+}}^{\alpha}f(b). \end{aligned} $$
(2.4)
Thus, using (2.3) and (2.4) in (2.2), we get the required inequality (2.1).
This completes the proof of the lemma. □
Remark 1
If in Lemma 2.1 we let \(\alpha=1\), it is clear that \(J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)=\int_{{\frac{a+b}{2}}} ^{a} f(t)\,dt\) and \(J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b)= \int_{{\frac{a+b}{2}}}^{b} f(t)\,dt\) hold. So in this case, we can see that equality (2.1) is a generalization of equality (1.5) of Lemma 1.1.
It is worth noting that Lemma 2.1 plays a key role in proving our main results.
Theorem 2.1
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\). If \(\vert f'\vert \) is \((s,m)\)-convex in the second sense on \([a,b]\) for \((s,m)\in(0,1]^{2}\), then the following inequality holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a}\biggl[\biggl(\frac{2}{a-b}\biggr)^{ \alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl(\frac{2}{b-a}\biggr)^{ \alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \frac{2}{s+\alpha+1} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert + mB( \alpha+1,s+1) \biggl( \biggl\vert f'\biggl(\frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] , \end{aligned} $$
(2.5)
where \(B(x,y)\) is the classical beta function, which may be defined for \(\Re e(x)>0\) and \(\Re e(y)>0\) by
$$B(x,y)= \int_{0}^{1} t^{x-1}(1-t)^{y-1}\,dt. $$
Proof
By equality (2.1), it follows that
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a) -\biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac {a+b}{2}}+(1-t)a\biggr) \biggr\vert \,dt \\ &\quad\quad{} + \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert \,dt \biggr] . \end{aligned} $$
(2.6)
Since \(\vert f'\vert \) is \((s,m)\)-convex in the second sense on \([a,b]\), for any \(t\in[0,1]\), we obtain
$$\begin{aligned}& \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert \leq t^{s} \biggl\vert f'\biggl( \frac {a+b}{2}\biggr) \biggr\vert +m(1-t)^{s} \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert , \end{aligned}$$
(2.7)
$$\begin{aligned}& \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert \leq t^{s} \biggl\vert f'\biggl( \frac {a+b}{2}\biggr) \biggr\vert +m(1-t)^{s} \biggl\vert f'\biggl( \frac{b}{m}\biggr) \biggr\vert . \end{aligned}$$
(2.8)
Using (2.6), (2.7), and (2.8), we have
$$\begin{aligned} & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \int_{0}^{1} 2t^{s+\alpha} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert \,dt + \int_{0}^{1}mt^{\alpha}(1-t)^{s} \biggl( \biggl\vert f'\biggl(\frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert \biggr) \,dt \biggr] \\ &\quad =\frac{b-a}{4} \biggl[ \frac{2}{s+\alpha+1} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert + mB( \alpha+1,s+1) \biggl( \biggl\vert f'\biggl(\frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] . \end{aligned} $$
 □
Remark 2
If we take \(\alpha=1\) in Theorem 2.1, we get inequality (1.6) of Theorem 1.1 which was proved in [5].
Theorem 2.2
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\). If \(\vert f'\vert \) is m-convex in the second sense on \([a,b]\) for \(m\in(0,1]\), then the following inequality holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a}\biggl[\biggl(\frac{2}{a-b}\biggr)^{ \alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl(\frac{2}{b-a}\biggr)^{ \alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \frac{1}{2(\alpha+2)}\bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr) \\ &\quad\quad{} +\frac{m( \alpha+3)}{2(\alpha+1)(\alpha+2)} \biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl( \frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] . \end{aligned} $$
(2.9)
Proof
By equality (2.1), it follows that
$$\begin{aligned} \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac {a+b}{2}}+(1-t)a\biggr) \biggr\vert \,dt+ \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert \,dt \biggr] \\ &\quad =\frac{b-a}{4} \biggl[ \int_{0}^{1}t^{\alpha} \biggl\vert f' \biggl( \frac{t}{2}b+\biggl(1- \frac{t}{2}\biggr)a \biggr) \biggr\vert \,dt \\ &\quad\quad{} + \int_{0}^{1}t^{\alpha} \biggl\vert f' \biggl( \frac{t}{2}a+\biggl(1- \frac{t}{2}\biggr)b \biggr) \biggr\vert \,dt \biggr] . \end{aligned} \end{aligned}$$
(2.10)
Since \(\vert f'\vert \) is m-convex in the second sense on \([a,b]\), for any \(t\in[0,1]\), we obtain
$$\begin{aligned}& \biggl\vert f' \biggl( \frac{t}{2}b+\biggl(1- \frac{t}{2}\biggr)a \biggr) \biggr\vert \leq{\frac{t}{2}} \bigl\vert f'(b) \bigr\vert +m {\biggl(1-\frac{t}{2}\biggr)} \biggl\vert f'\biggl(\frac{a}{m}\biggr) \biggr\vert , \end{aligned}$$
(2.11)
$$\begin{aligned}& \biggl\vert f' \biggl( \frac{t}{2}a+\biggl(1- \frac{t}{2}\biggr)b \biggr) \biggr\vert \leq{\frac{t}{2}} \bigl\vert f'(a) \bigr\vert +m {\biggl(1-\frac{t}{2}\biggr)} \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert . \end{aligned}$$
(2.12)
Using (2.10), (2.11), and (2.12), we have
$$\begin{aligned} & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \int_{0}^{1} \frac{t^{\alpha+1}}{2}\bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr)\,dt \\ &\quad\quad {} + \int_{0}^{1} mt^{\alpha}\biggl(1- \frac{t}{2}\biggr) \biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl( \frac{b}{m}\biggr) \biggr\vert \biggr) \,dt \biggr] \\ &\quad =\frac{b-a}{4} \biggl[ \frac{1}{2(\alpha+2)}\bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr) +\frac{m( \alpha+3)}{2(\alpha+1)(\alpha+2)} \biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl( \frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] . \end{aligned}$$
This completes the proof. □
Corollary 2.1
Suppose that all the assumptions of Theorem 2.2 are satisfied, and if \(\alpha=1\), then we have the following inequality:
$$ \begin{aligned}[b] & \biggl\vert f \biggl( \frac{a+b}{2} \biggr) -\frac{1}{b-a} \int _{a}^{b}f(t)\,dt \biggr\vert \\ &\leq \frac{b-a}{4} \biggl[ \frac{1}{6}\bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr)+ \frac{m}{3}\biggl( \biggl\vert f'\biggl( \frac{a}{m} \biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m} \biggr) \biggr\vert \biggr) \biggr] .\end{aligned} $$
(2.13)
Corollary 2.2
Suppose that all the assumptions of Theorem 2.2 are satisfied, and if \(\alpha=1\), \(m=1\), then inequality (2.9) becomes the following inequality which was obtained in [10]:
$$\biggl\vert f \biggl( \frac{a+b}{2} \biggr) -\frac{1}{b-a} \int _{a}^{b}f(t)\,dt \biggr\vert \leq \frac{b-a}{8} \bigl[ \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr] . $$
Theorem 2.3
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\). If \(\vert f'\vert ^{q}\) is \((s,m)\)-convex in the second sense on \([a,b]\) for \((s,m)\in(0,1]^{2}\) and if \(q>1\), \(q\geq r\geq0\), then the following inequality holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \frac{q-1}{\alpha(q-r)+q-1} \biggr] ^{1-{\frac{1}{q}}} \biggl[ 2\biggl(\frac{1}{s+ \alpha r+1}\biggr)^{\frac{1}{q}} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert \\ &\quad\quad{} +m^{\frac{1}{q}}B( \alpha r+1,s+1)^{\frac{1}{q}} \biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl( \frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] , \end{aligned} $$
(2.14)
where \(B(x,y)\) is the classical beta function.
Proof
Since \(\vert f'\vert ^{q}\) is \((s,m)\)-convex in the second sense on \([a,b]\) for \((s,m)\in(0,1]^{2}\), one can get the following inequalities:
$$\begin{aligned}& \begin{aligned}[b] & \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert \,dt \\ &\quad \leq\biggl( \int_{0}^{1}t^{\frac{\alpha(q-r)}{q-1}}\,dt\biggr)^{1-{\frac{1}{q}}} \biggl( \int_{0}^{1}t^{\alpha r} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert ^{q}\,dt\biggr)^{ \frac{1}{q}} \\ &\quad \leq\biggl( \int_{0}^{1}t^{\frac{\alpha(q-r)}{q-1}}\,dt\biggr)^{1-{\frac{1}{q}}} \biggl[ \int_{0}^{1} t^{s+\alpha r} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert ^{q}\,dt + \int_{0} ^{1}mt^{\alpha r}(1-t)^{s} \biggl\vert f'\biggl(\frac{a}{m}\biggr) \biggr\vert ^{q}\,dt \biggr] ^{\frac{1}{q}}\hspace{-20pt} \\ &\quad = \biggl[ \frac{q-1}{\alpha(q-r)+q-1} \biggr] ^{1-{\frac{1}{q}}} \biggl[ \frac{1}{s+ \alpha r+1} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert ^{q} \\ &\quad\quad{} +mB(\alpha r+1,s+1) \biggl\vert f' \biggl(\frac {a}{m}\biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(2.15)
$$\begin{aligned}& \begin{aligned}[b] & \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert \,dt \\ &\quad \leq \biggl[ \frac{q-1}{\alpha(q-r)+q-1} \biggr] ^{1-{\frac{1}{q}}} \biggl[ \frac{1}{s+\alpha r+1} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert ^{q} \\ &\quad\quad{} +mB(\alpha r+1,s+1) \biggl\vert f' \biggl( \frac{b}{m}\biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
(2.16)
Therefore, inequalities (2.6), (2.15), (2.16) and the following relation imply (2.14)
$$\sum_{i=1}^{n}(a_{i}+b_{i})^{l} \leq\sum_{i=1}^{n}{a_{i}}^{l}+ \sum_{i=1}^{n}{b_{i}}^{l} $$
for \(0< l<1\), \(a_{1},a_{2},\ldots,a_{n}\geq0 \), \(b_{1},b_{2},\ldots,b _{n}\geq0 \). □
Corollary 2.3
Suppose that all the assumptions of Theorem 2.3 are satisfied, and if \(r=0\), then the following inequality for fractional integrals holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl(\frac{q-1}{\alpha q+q-1}\biggr)^{\frac{q-1}{q}} \biggl( \frac{1}{s+1}\biggr)^{\frac{1}{q}} \\ &\quad\quad{}\times \biggl[ 2 \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert +m^{\frac{1}{q}}\biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] . \end{aligned} $$
(2.17)
Corollary 2.4
Suppose that all the assumptions of Theorem 2.3 are satisfied, and if \(r=0\), \(\alpha=1\), then we have the following inequality which was obtained in [5]:
$$ \begin{aligned}[b] & \biggl\vert f \biggl( \frac{a+b}{2} \biggr) -\frac{1}{b-a} \int _{a}^{b}f(t)\,dt \biggr\vert \\ &\quad \leq\biggl(\frac{b-a}{4}\biggr) \biggl(\frac{q-1}{2q-1} \biggr)^{\frac{q-1}{q}} \biggl(\frac{1}{s+1}\biggr)^{ \frac{1}{q}} \\ &\quad\quad{}\times \biggl[ 2 \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert +m^{\frac{1}{q}}\biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert \biggr)\biggr] . \end{aligned} $$
(2.18)
Corollary 2.5
Suppose that all the assumptions of Theorem 2.3 are satisfied, and if we let \(r=1\), then the following inequality for fractional integrals holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[\frac{1}{\alpha+1}\biggr]^{1-{\frac{1}{q}}} \biggl[2 \biggl( \frac{1}{s+ \alpha+1} \biggr) ^{\frac{1}{q}} \biggl\vert f'\biggl(\frac{a+b}{2}\biggr) \biggr\vert \\ &\quad\quad{} +m^{\frac{1}{q}}B( \alpha+1,s+1)^{\frac{1}{q}}\biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl( \frac{b}{m}\biggr) \biggr\vert \biggr)\biggr]. \end{aligned} $$
(2.19)
Corollary 2.6
Suppose that all the assumptions of Theorem 2.3 are satisfied, and if \(r=1\), \(\alpha=1\), then we have the following inequality which is the result in [5]:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{8}\biggl(\frac{2}{s+2}\biggr)^{\frac{1}{q}} \biggl[ 2 \biggl\vert f'\biggl( \frac{a+b}{2}\biggr) \biggr\vert +m^{\frac{1}{q}}\biggl(\frac{1}{s+1}\biggr)^{\frac{1}{q}}\biggl( \biggl\vert f'\biggl( \frac{a}{m}\biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{b}{m}\biggr) \biggr\vert \biggr) \biggr] . \end{aligned} $$
(2.20)
Theorem 2.4
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\). If \(\vert f'\vert ^{q}\) is s-concave in the second sense on \([a,b]\) for some fixed \(q>1\) and \(s\in(0,1]\), then the following inequality holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \frac{q-1}{\alpha q+q-1} \biggr] ^{\frac{1}{p}} 2^{\frac{s-1}{q}} \biggl[ \biggl\vert f'\biggl(\frac{3a+b}{4} \biggr) \biggr\vert + \biggl\vert f'\biggl(\frac{a+3b}{4} \biggr) \biggr\vert \biggr] , \end{aligned} $$
(2.21)
where \(\frac{1}{p}+\frac{1}{q}=1\).
Proof
From Lemma 2.1 and by using Hölder’s inequality for \(q>1\) and \(p=\frac{q}{q-1}\), it follows that
$$\begin{aligned} \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert \,dt+ \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert \,dt \biggr] \\ &\quad \leq\frac{b-a}{4} \biggl( \int_{0}^{1}t^{\frac{\alpha q}{q-1}}\,dt\biggr)^{ \frac{1}{p}} \biggl[ \biggl( \int_{0}^{1} \biggl\vert f'\biggl(t{ \frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert ^{q}\,dt \biggr)^{ \frac{1}{q}} \\ &\quad\quad{} + \int_{0}^{1} \biggl\vert f'\biggl(t{ \frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert ^{q}\,dt)^{ \frac{1}{q}} \biggr] . \end{aligned} \end{aligned}$$
(2.22)
Since \(\vert f'\vert ^{q}\) is s-concave on \([a,b]\), so by using inequality (1.4), we obtain
$$\int_{0}^{1} \biggl\vert f'\biggl(t{ \frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert ^{q}\,dt \leq2^{s-1} \biggl\vert f'\biggl( \frac{3a+b}{4}\biggr) \biggr\vert ^{q}. $$
Analogously,
$$\int_{0}^{1} \biggl\vert f'\biggl(t{ \frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert ^{q}\,dt \leq2^{s-1} \biggl\vert f'\biggl( \frac{a+3b}{4}\biggr) \biggr\vert ^{q}. $$
Using the last two inequalities in (2.22), we get (2.21). This completes the proof of the theorem. □
Corollary 2.7
Suppose all the assumptions of Theorem 2.4 are satisfied, and assume that \(\vert f'\vert \) is a linear map, then we get the following inequality:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4} \biggl[ \frac{q-1}{\alpha q+q-1} \biggr] ^{\frac{1}{p}} 2^{\frac{s-1}{q}} \bigl\vert f'(a+b) \bigr\vert . \end{aligned} $$
(2.23)
Theorem 2.5
Let f be defined on I and differentiable on \(I^{o}\) such that \(a,b\in I\) with \(a< b\), \(f'\in L[a,b]\). If \(\vert f'\vert ^{q}\) is concave in the second sense on \([a,b]\) for some fixed \(q\geq1\) and \(s\in(0,1]\), then the following inequality holds:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4(\alpha+1)} \biggl[ \biggl\vert f'\biggl( \frac{(\alpha+3)a+(\alpha+1)b}{2( \alpha+2)}\biggr) \biggr\vert + \biggl\vert f'\biggl( \frac{(\alpha+1)a+(\alpha+3)b}{2(\alpha+2)}\biggr) \biggr\vert \biggr] . \end{aligned} $$
(2.24)
Proof
By the concavity of \(\vert f'\vert ^{q}\) on \([a,b]\) and the power-mean inequality, we have that \(\vert f'\vert \) is also concave on \([a,b]\).
Accordingly, using Jensen’s integral inequality, we obtain
$$ \begin{aligned}[b] & \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)a\biggr) \biggr\vert \,dt \\ &\quad \leq\biggl( \int_{0}^{1}t^{\alpha}\,dt\biggr) \biggl\vert f'\biggl(\frac{\int_{0}^{1}t^{\alpha}(t {\frac{a+b}{2}}+(1-t)a)\,dt}{\int_{0}^{1}t^{\alpha}\,dt}\biggr) \biggr\vert \\ &\quad =\frac{1}{\alpha+1} \biggl\vert f'\biggl( \frac{(\alpha+3)a+(\alpha+1)b}{2(\alpha+2)}\biggr) \biggr\vert . \end{aligned} $$
(2.25)
Analogously,
$$ \begin{aligned}[b] & \int_{0}^{1}t^{\alpha} \biggl\vert f'\biggl(t{\frac{a+b}{2}}+(1-t)b\biggr) \biggr\vert \,dt \\ &\quad \leq\biggl( \int_{0}^{1}t^{\alpha}\,dt\biggr) \biggl\vert f'\biggl(\frac{\int_{0}^{1}t^{\alpha}(t {\frac{a+b}{2}}+(1-t)b)\,dt}{\int_{0}^{1}t^{\alpha}\,dt}\biggr) \biggr\vert \\ &\quad =\frac{1}{\alpha+1} \biggl\vert f'\biggl( \frac{(\alpha+1)a+(\alpha+3)b}{2(\alpha+2)}\biggr) \biggr\vert . \end{aligned} $$
(2.26)
Using inequalities (2.25) and (2.26) in (2.6), we get (2.24). This completes the proof of the theorem. □
Corollary 2.8
Suppose that all the assumptions of Theorem 2.5 are satisfied, and assume that \(\vert f'\vert \) is a linear map, then we get the following inequality:
$$ \begin{aligned}[b] & \biggl\vert f\biggl(\frac{a+b}{2}\biggr)+ \frac{\Gamma(\alpha+1)}{b-a} \biggl[ \biggl( \frac{2}{a-b}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(a)- \biggl( \frac{2}{b-a}\biggr)^{\alpha-1}J_{{(\frac{a+b}{2})}^{+}}^{\alpha}f(b) \biggr] \biggr\vert \\ &\quad \leq\frac{b-a}{4(\alpha+1)} \bigl\vert f'(a+b) \bigr\vert . \end{aligned} $$
(2.27)
Proof
It is a direct consequence of Theorem 2.5 and using the linearity of \(\vert f'\vert \). □
Remark 3
When \(\vert f'\vert ^{q}\) is concave in the second sense on \([a,b]\) for some fixed \(q\geq1\) and \(\vert f'\vert \) is a linear map, the error bound in (2.27) is easier to calculate as compared to calculating it in (2.24).
Corollary 2.9
Suppose that all the assumptions of Theorem 2.5 are satisfied, and if \(\alpha=1\), then
$$ \begin{aligned}[b] & \biggl\vert f \biggl( \frac{a+b}{2} \biggr) -\frac{1}{b-a} \int _{a}^{b}f(t)\,dt \biggr\vert \\ &\quad \leq\biggl(\frac{b-a}{8}\biggr)\biggl[ \biggl\vert f' \biggl(\frac{2a+b}{3}\biggr) \biggr\vert + \biggl\vert f' \biggl(\frac{a+2b}{3}\biggr) \biggr\vert \biggr]. \end{aligned} $$
(2.28)
Corollary 2.10
Suppose that all the assumptions of Theorem 2.5 are satisfied, and assume that \(\vert f'\vert \) is a linear map, and if \(\alpha=1\), then we get the following inequality:
$$ \begin{aligned}[b] & \biggl\vert f \biggl( \frac{a+b}{2} \biggr) -\frac{1}{b-a} \int _{a}^{b}f(t)\,dt \biggr\vert \\ &\quad \leq\biggl(\frac{b-a}{8}\biggr) \bigl\vert f'(a+b) \bigr\vert . \end{aligned} $$
(2.29)
Proof
It is from Corollary 2.8. □
Remark 4
The error bound in (2.29) is easier to calculate as compared to calculating it in (2.28), when \(\vert f'\vert ^{q}\) is concave in the second sense on \([a,b]\) for some fixed \(q\geq1\) and \(\vert f'\vert \) is a linear map.

3 Conclusion

In this paper, we have obtained a new fractional integral identity, which played a key role in proving our main inequalities. Several Hermite–Hadamard type fractional integral inequalities presented here, being very general, are pointed out to be specialized to yield some known results.

Acknowledgements

The authors are grateful to the responsible editor and the anonymous referees for their valuable comments and suggestions, which have greatly improved the earlier version of this paper.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Pec̆carić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New York (1991) Pec̆carić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New York (1991)
2.
go back to reference Orlicz, W.: A note on modular space I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 9, 157–162 (1961) MathSciNetMATH Orlicz, W.: A note on modular space I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 9, 157–162 (1961) MathSciNetMATH
4.
go back to reference Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32, 687–696 (1999) MATH Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32, 687–696 (1999) MATH
6.
go back to reference Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013) CrossRefMATH Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013) CrossRefMATH
7.
go back to reference Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997) CrossRef Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997) CrossRef
8.
go back to reference Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATH Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATH
9.
go back to reference Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999) Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
10.
go back to reference Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147, 137–146 (2004) MathSciNetMATH Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147, 137–146 (2004) MathSciNetMATH
Metadata
Title
Fractional Hermite–Hadamard inequalities for -convex or s-concave functions
Authors
Tieyan Lian
Wei Tang
Rui Zhou
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1829-1

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner