Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Monotonicity properties and bounds for the complete p-elliptic integrals

Authors: Ti-Ren Huang, Shen-Yang Tan, Xiao-Yan Ma, Yu-Ming Chu

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

We generalize several monotonicity and convexity properties as well as sharp inequalities for the complete elliptic integrals to the complete p-elliptic integrals.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(p>1\) and \(0\leq\theta\leq 1\). Then the function \(\sin_{p}^{-1}(\theta)\) and the number \(\pi_{p}\) are defined by
$$ \sin_{p}^{-1}(\theta)= \int_{0}^{\theta}\frac{1}{(1-t^{p})^{1/p}}\,dt $$
(1.1)
and
$$ \frac{\pi_{p}}{2}=\sin_{p}^{-1}(1)= \int_{0}^{1}\frac{1}{(1-t^{p})^{1/p}}\,dt=\frac{\pi}{p\sin(\pi/p)}= \frac{1}{p} B(1/p,1-1/p), $$
(1.2)
respectively, where B is the classical beta function. The inverse function of \(\sin_{p}^{-1}(\theta)\) defined on \([0, \pi_{p}/2]\) is said to be the generalized sine function and denoted by \(\sin_{p}\). From (1.1) and (1.2) we clearly see that \(\sin_{2}(\theta)=\sin(\theta)\) and \(\pi_{2}=\pi\). The generalized sine function \(\sin_{p}(\theta)\) and \(\pi_{p}\) appeared in the eigenvalue problem of one-dimensional p-Laplacian
$$ -\bigl( \bigl\vert u' \bigr\vert ^{p-2}u' \bigr)'=\lambda \vert u \vert ^{p-2} u,\quad u(0)=u(1)=0. $$
Indeed, the eigenvalues are given by \(\lambda_{n}=(p-1) (n\pi_{p})^{p}\) and the corresponding eigenfunction to \(\lambda_{n}\) is \(u(x)=\sin_{p}(n\pi_{n}x)\) for each \(n=1, 2, 3,\ldots \) . In the same way one can define the generalized cosine and tangent functions and their inverse functions [13].
Let \(x\in (-1,1)\), and a, b and c be the real numbers with \(c\neq 0,-1,-2,\ldots \) . Then the Gaussian hypergeometric function \(F(a, b; c; x)\) [411] is defined by
$$ F(a,b;c;x)=\sum_{n=0}^{\infty}\frac{(a,n)(b,n)}{(c,n)}\frac{x^{n}}{n!}, $$
(1.3)
where \((a,n)\) denotes the shifted factorial function \((a,n)=a(a+1)\cdots (a+n-1)\), \(n=1,2,\ldots \) , and \((a,0)=1\) for \(a\neq 0\). The well-known complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) [1215] of the first and second kinds are respectively defined by
$$ \mathcal{K}(r)=\frac{\pi}{2}F \biggl(\frac{1}{2},\frac{1}{2};1;r^{2} \biggr)= \int_{0}^{\pi/2}\frac{d\theta}{\sqrt{1-r^{2}\sin^{2}\theta}}= \int_{0}^{1}\frac{dt}{\sqrt{(1-t^{2})(1-r^{2}t^{2})}} $$
and
$$ \mathcal{E}(r)=\frac{\pi}{2}F \biggl(\frac{1}{2},- \frac{1}{2};1;r^{2} \biggr)= \int_{0}^{\pi/2}{\sqrt{1-r^{2} \sin^{2}\theta}}\,d\theta= \int_{0}^{1}{\sqrt{\frac{1-r^{2}t^{2}}{1-t^{2}}}}\,dt. $$
Let \(p\in (1,\infty)\) and \(r\in [0,1)\). Then the complete p-elliptic integrals \(\mathcal{K}_{p}(r)\) and \(\mathcal{E}_{p}(r)\) [16, 17] of the first and second kinds are respectively defined by
$$ \mathcal{K}_{p}(r)= \int_{0}^{\pi_{p}/2}\frac{d\theta}{(1-r^{p}\sin_{p}^{p}\theta)^{1-1/p}}= \int_{0}^{1}\frac{dt}{(1-t^{p})^{1/p}(1-r^{p}t^{p})^{1-1/p}} $$
(1.4)
and
$$ \mathcal{E}_{p}(r)= \int_{0}^{\pi_{p}/2}{\bigl(1-r^{p} \sin_{p}^{p}\theta\bigr)^{1/p}}\,d\theta= \int_{0}^{1}{ \biggl(\frac{1-r^{p}t^{p}}{1-t^{p}} \biggr)^{1/p}}\,dt. $$
(1.5)
From (1.4) and (1.5) we clearly see that the complete p-elliptic integrals \(\mathcal{K}_{p}(r)\) and \(\mathcal{E}_{p}(r)\) respectively reduce to the complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) if \(p=2\). Recently, the complete p-elliptic integrals \(\mathcal{K}_{p}(r)\) and \(\mathcal{E}_{p}(r)\) and their special cases \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) have attracted the attention of many mathematicians [1830].
Takeuchi [31] generalized several well-known theorems for the complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\), such as Legendre’s formula, Gaussian’s \(AGM\) approximation formulas for π, differential equations, and other similar results of the theory of complete elliptic integrals to the complete p-elliptic integrals \(\mathcal{K}_{p}(r)\) and \(\mathcal{E}_{p}(r)\), and proved that
$$\begin{aligned} &\mathcal{K}_{p}(r)=\frac{\pi_{p}}{2}F \biggl( \frac{1}{p},1-\frac{1}{p};1;r^{p} \biggr), \end{aligned}$$
(1.6)
$$\begin{aligned} &\mathcal{E}_{p}(r)=\frac{\pi_{p}}{2}F \biggl( \frac{1}{p},-\frac{1}{p};1;r^{p} \biggr). \end{aligned}$$
(1.7)
Anderson, Qiu, and Vamanamurthy [32] discussed the monotonicity and convexity properties of the function
$$ r\mapsto f(r)=\frac{\mathcal{E}(r)-r^{\prime2}\mathcal{K}(r)}{r^{2}}\cdot\frac{r^{\prime2}}{\mathcal{E'}(r)-r^{2}\mathcal{K'}(r)} $$
and proved that the double inequality
$$ \frac{\pi}{4}< f(r)< \frac{\pi }{4}+ \biggl( \frac{4}{\pi}-\frac{\pi}{4} \biggr)r $$
(1.8)
holds for all \(r\in (0,1)\). Both inequalities given in (1.8) are sharp as \(r\rightarrow 0\), while the second inequality is also sharp as \(r\rightarrow 1\). Here and in what follows, we denote \(r'=(1-r^{p})^{1/p}\), \(\mathcal{K}_{p}'(r)=\mathcal{K}_{p}(r')\), and \(\mathcal{E}_{p}'(r)=\mathcal{E}_{p}(r')\).
Alzer and Richards [33] proved that the function
$$ r\mapsto \Delta(r)=\frac{\mathcal{E}(r)-r^{\prime2}\mathcal{K}(r)}{r^{2}}-\frac{\mathcal{E'}(r)-r^{2}\mathcal{K'}(r)}{r^{\prime2}} $$
is strictly increasing and convex from \((0,1)\) onto \((\pi/4-1,1-\pi/4)\), and the double inequality
$$ \frac{\pi}{4}-1+\alpha r< \Delta(r)< \frac{\pi }{4}-1+\beta r $$
(1.9)
holds for all \(r\in (0,1)\) with the best constant \(\alpha=0\) and \(\beta=2-\pi/2\).
Inequalities (1.8) and (1.9) have been generalized to the generalized elliptic integrals by Huang et al. in [34].
The main purpose of the article is to generalize inequalities (1.8) and (1.9) to the complete p-elliptic integrals. We discuss the monotonicity and convexity properties of the functions
$$\begin{aligned} &r\mapsto f_{p}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r)}{r^{p}}\cdot \frac{r^{\prime p}}{\mathcal{E'}_{p}(r)-r^{p}\mathcal{K'}_{p}(r)}, \end{aligned}$$
(1.10)
$$\begin{aligned} &r\mapsto g_{p}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r)}{r^{p}}- \frac{\mathcal{E'}_{p}(r)-r^{p}\mathcal{K'}_{p}(r)}{r^{\prime p}}, \end{aligned}$$
(1.11)
and present their corresponding sharp inequalities.

2 Lemmas

In order to prove our main results, we need several formulas and lemmas, which we present in this section.
The following formulas for the hypergeometric function and complete p-elliptic integrals can be found in the literature [5, 1.20(10), (1.16), 1.19(4), (1.48)]], [18], and [35, Equation (26)]:
$$\begin{aligned} &F(a,b;a+b+1;x)=(1-x)F(a+1,b+1;a+b+1;x), \end{aligned}$$
(2.1)
$$\begin{aligned} &\frac{dF(a,b;c;x)}{dx}=\frac{ab}{c}F(a+1,b+1;c+1;x), \end{aligned}$$
(2.2)
$$\begin{aligned} &F(a,b;c;1)=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \quad (c>a+b), \end{aligned}$$
(2.3)
$$\begin{aligned} &F(a,b;c;x)\sim -\frac{\log(1-x)}{B(a,b)} \quad (x\rightarrow1, c=a+b), \end{aligned}$$
(2.4)
$$\begin{aligned} &(\sigma-\rho)F(\alpha,\rho;\sigma+1;z)=\sigma F(\alpha,\rho; \sigma;z)-\rho F(\alpha,\rho+1;\sigma+1;z), \end{aligned}$$
(2.5)
$$\begin{aligned} &\frac{d\mathcal {K}_{p}(r)}{dr}=\frac{\mathcal {E}_{p}(r)-r^{\prime p}\mathcal {K}_{a}(r)}{rr^{\prime p}}, \qquad \frac{d\mathcal {E}_{a}(r)}{dr}=\frac{\mathcal {E}_{p}(r)-{\mathcal {K}_{p}}(r)}{r}, \end{aligned}$$
(2.6)
where \(\Gamma(x)\) is the classical gamma function.
Lemma 2.1
Let \(p \in(1,\infty)\). Then the function
$$ r\mapsto f_{p}^{1}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p} \mathcal{K}_{p}(r)}{r^{p}} $$
(2.7)
is strictly increasing and convex from \((0, 1)\) onto \(((p-1){\pi_{p}}/(2p), 1)\).
Proof
It follows from (1.3), (1.6), and (1.7) that
$$\begin{aligned} &\mathcal{E}_{p}(r)-r^{\prime p} \mathcal{K}_{p}(r) \\ &\quad =\frac{\pi_{p}}{2} \biggl[F \biggl(\frac{1}{p},-\frac{1}{p}, \;1;r^{p} \biggr)-\bigl(1-r^{p}\bigr)F \biggl( \frac{1}{p},1-\frac{1}{p};1;r^{p} \biggr) \biggr] \\ &\quad =\frac{\pi_{p}}{2} \Biggl[\sum_{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (-\frac{1}{p},n )}{(n!)^{2}}r^{pn}- \bigl(1-r^{p}\bigr)\sum _{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (1-\frac{1}{p},n )}{(n!)^{2}}r^{pn} \Biggr] \\ &\quad =\frac{\pi_{p}}{2} \Biggl[\sum_{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (-\frac{1}{p},n )- (\frac{1}{p},n ) (1-\frac{1}{p},n )}{(n!)^{2}}r^{pn}+ \sum_{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (1-\frac{1}{p},n )}{(n!)^{2}}r^{p(n+1)} \Biggr] \\ &\quad =\frac{\pi_{p}}{2}\sum_{n=1}^{\infty}\frac{n^{2} (\frac{1}{p},n-1 ) (1-\frac{1}{p},n-1 ) -n (\frac{1}{p},n ) (1-\frac{1}{p},n-1 )}{(n!)^{2}}r^{pn} \\ &\quad =\frac{\pi_{p}}{2}\sum_{n=1}^{\infty}\frac{n (\frac{1}{p},n-1 ) (1-\frac{1}{p},n-1 ) (1-\frac{1}{p} )}{(n!)^{2}}r^{pn} \\ &\quad =\frac{\pi_{p} r^{p}}{2} \biggl(1-\frac{1}{p} \biggr)\sum _{n=0}^{\infty}\frac{1}{n+1} a_{n} r^{pn}, \end{aligned}$$
where \(a_{n}=(1/p,n)(1-1/p,n)(n!)^{-2}\). Therefore,
$$ f_{p}^{1}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p} \mathcal{K}_{p}(r)}{r^{p}}= \frac{\pi_{p}}{2} \biggl(1-\frac{1}{p} \biggr)\sum _{n=0}^{\infty}\frac{1}{n+1} a_{n} r^{pn} $$
(2.8)
and \(f_{p}^{1}(r)\) is strictly increasing and convex on \((0, 1)\) due to \(1-1/p>0\).
From (1.5), (1.6), (2.4), (2.7), and (2.8) we clearly see that
$$\begin{aligned} &\mathcal{E}_{p} \bigl(1^{-} \bigr)=1, \qquad \lim _{r\rightarrow 1^{-}}r^{\prime p} \mathcal{K}_{p}(r)=0, \\ &f_{p}^{1}\bigl(0^{+}\bigr)=\frac{(p-1){\pi_{p}}}{2p}, \qquad f_{p}^{1}\bigl(1^{-}\bigr)=1. \end{aligned}$$
 □
Lemma 2.2
(see [18, Lemma 2.3])
Let \(I\subset \mathbb{R}\) be an interval and \(f, g: I\rightarrow (0,\infty)\) be two positive real-valued functions. Then the product fg is convex on I if both f and g are convex and increasing (decreasing) on I.
Lemma 2.3
Let \(p>1\). Then the function
$$\begin{aligned} r\mapsto J(r)=\frac{(1-r^{p}) (\mathcal{E}_{p}(r)-(1+r^{p})\mathcal{K}_{p}(r) )}{r^{2p-1}} \end{aligned}$$
(2.9)
is strictly increasing from \((0,1)\) onto \((-\infty,0)\).
Proof
Let
$$ f_{1}(r)=\bigl(1-r^{p}\bigr) \biggl[F \biggl( \frac{1}{p},-\frac{1}{p};1;r^{p} \biggr)- \bigl(1+r^{p}\bigr)F \biggl(\frac{1}{p},1-\frac{1}{p};1;r^{p} \biggr) \biggr]. $$
(2.10)
Then it follows from (1.3), (1.6), (1.7), (2.9), and (2.10) that
$$\begin{aligned} &J(r)=\frac{\pi_{p}}{2r^{2p-1}}f_{1}(r), \end{aligned}$$
(2.11)
$$\begin{aligned} &f_{1}(r)=\bigl(1-r^{p}\bigr) \Biggl[\sum _{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (-\frac{1}{p},n )}{(n!)^{2}}r^{pn}- \bigl(1+r^{p}\bigr)\sum_{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (1-\frac{1}{p},n )}{(n!)^{2}}r^{pn} \Biggr] \\ &\hphantom{f_{1}(r)}=\bigl(1-r^{p}\bigr) \Biggl[\sum_{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (-\frac{1}{p},n )- (\frac{1}{p},n ) (1-\frac{1}{p},n )}{(n!)^{2}}r^{pn}- \sum_{n=0}^{\infty}\frac{ (\frac{1}{p},n ) (1-\frac{1}{p},n )}{(n!)^{2}}r^{p(n+1)} \Biggr] \\ &\hphantom{f_{1}(r)}=\bigl(1-r^{p}\bigr)\sum_{n=1}^{\infty}\frac{-n^{2} (\frac{1}{p},n-1 ) (1-\frac{1}{p},n-1 ) -n (\frac{1}{p},n ) (1-\frac{1}{p},n-1 )}{(n!)^{2}}r^{pn} \\ &\hphantom{f_{1}(r)}=\bigl(1-r^{p}\bigr)\sum_{n=1}^{\infty}\frac{ (\frac{1}{p},n-1 ) (1-\frac{1}{p},n-1 ) ( (1-\frac{1}{p} )n-2n^{2} )}{(n!)^{2}}r^{pn} \\ &\hphantom{f_{1}(r)}=\sum_{n=1}^{\infty}\frac{ (\frac{1}{p},n-1 ) (1-\frac{1}{p},n-1 ) ( (1-\frac{1}{p} )n-2n^{2} )}{(n!)^{2}}r^{pn} \\ &\hphantom{f_{1}(r)=}{}-\sum_{n=2}^{\infty}\frac{ (\frac{1}{p},n-2 ) (1-\frac{1}{p},n-2 ) ( (1-\frac{1}{p} )(n-1)-2(n-1)^{2} )}{((n-1)!)^{2}}r^{pn} \\ &\hphantom{f_{1}(r)}= \biggl(-1-\frac{1}{p} \biggr)r^{p} \\ &\hphantom{f_{1}(r)=}{}+\sum _{n=2}^{\infty}\frac{ (\frac{1}{p},n-2 ) (1-\frac{1}{p},n-2 ) [2n (n+\frac{1}{p^{3}}-2 )+\frac{1}{p^{3}}-\frac{2}{p^{2}}-\frac{1}{p}+2 ]}{(n!)^{2}}r^{pn}. \end{aligned}$$
(2.12)
Equations (2.11) and (2.12) lead to
$$ \begin{aligned}[b] J(r)={}&\frac{\pi_{p}}{2} \Biggl\{ -\frac{1+p}{pr^{p-1}}\\ &{}+ \sum _{n=2}^{\infty}\frac{ (\frac{1}{p},n-2 ) (1-\frac{1}{p},n-2 ) [2n (n+\frac{1}{p^{3}}-2 ) +\frac{1}{p^{3}}-\frac{2}{p^{2}}-\frac{1}{p}+2 ]}{(n!)^{2}}r^{p(n-2)+1} \Biggr\} . \end{aligned} $$
(2.13)
It is easy to verify that
$$ 2n \biggl(n+\frac{1}{p^{3}}-2 \biggr)+\frac{1}{p^{3}}- \frac{2}{p^{2}}-\frac{1}{p}+2>0 $$
(2.14)
for \(p>1\) and \(n\geq 2\).
Therefore, the monotonicity of \(J(r)\) on the interval \((0, 1)\) follows easily from (2.13) and (2.14).
From (2.3), (2.4), (2.10), (2.11), and (2.13) we clearly see that \(J(0^{+})=-\infty\) and
$$\begin{aligned} &\lim_{r\rightarrow 1^{-}}F \biggl(\frac{1}{p}, -\frac{1}{p}; 1; r^{p} \biggr)=\frac{1}{\Gamma(1-1/p)\Gamma(1+1/p)}, \qquad \lim_{r\rightarrow 1^{-}} \bigl(1-r^{p} \bigr)F \biggl(\frac{1}{p}, 1-\frac{1}{p}; 1; r^{p} \biggr)=0, \\ &J\bigl(1^{-}\bigr)=0. \end{aligned}$$
 □
Lemma 2.4
(see [5, Theorem 1.25])
Let \(a, b\in \mathbb{R}\) with \(a< b\), \(f,g: [a,b]\rightarrow \mathbb{R}\) be continuous on \([a, b]\) and be differentiable on \((a, b)\) such that \(g'(x) \neq 0\) on \((a, b)\). If \(f'(x)/g'(x)\) is increasing (decreasing) on \((a, b)\), then so are the functions
$$ \frac{f(x)-f(a)}{g(x)-g(a)}, \quad\quad \frac{f(x)-f(b)}{g(x)-g(b)}. $$
If \(f'(x)/g'(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

3 Main results

Theorem 3.1
Let \(p>1\) and \(f_{p}(r)\) be defined by (1.10). Then \(f_{p}(r)\) is strictly increasing and convex from \((0,1)\) onto \(((p-1)\pi_{p}/(2p), 2p/[(p-1)\pi_{p}])\), and the double inequality
$$ \frac{(p-1) \pi_{p} }{2p}+\alpha r< f_{p}(r)< \frac{(p-1) \pi_{p} }{2p}+ \beta r $$
(3.1)
holds for all \(r\in(0,1)\) if and only if \(\alpha\leq 0\) and \(\beta\geq 2p/[(p-1)\pi_{p}]-(p-1)\pi_{p}/(2p)\). Moreover, both inequalities in (3.1) are sharp as \(r\rightarrow 0\), while the second inequality is sharp as \(r\rightarrow 1\).
Proof
Let \(f^{1}_{p}(r)\) be defined by (2.7). Then \(f_{p}(r)\) can be rewritten as
$$ f_{p}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r)}{r^{p}}\cdot\frac{r^{\prime p}}{\mathcal{E'}_{p}(r)-r^{p}\mathcal{K'}_{p}(r)}=f^{1}_{p}(r) \cdot \frac{1}{f^{1}_{p}(r')}. $$
(3.2)
From Lemma 2.1 we know that both the functions \(f_{p}^{1}(r)\) and \(1/f^{1}_{p}(r')\) are positive and strictly increasing on \((0,1)\), hence \(f_{p}(r)\) is also strictly increasing on \((0,1)\).
Next, we prove that \(1/f^{1}_{a}(r')\) is convex on \((0,1)\). It follows from (2.6) and (2.7) that
$$\begin{aligned} \frac{d}{dr} \biggl(\frac{1}{f_{p}^{1}(r)} \biggr)&= \frac{pr^{p-1}(\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r))-(p-1)r^{2p-1}\mathcal{K}_{p}(r) }{(\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r))^{2}} \\ &=\frac{p(\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r))-(p-1)r^{p}\mathcal{K}_{p}(r) }{\frac{(\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r))^{2}}{r^{p-1}}}=\frac{g_{1}(r)}{g_{2}(r)}, \end{aligned}$$
(3.3)
where
$$ \begin{aligned} &g_{1}(r)=p \bigl(\mathcal{E}_{p}(r)-r^{\prime p} \mathcal{K}_{p}(r) \bigr)+(1-p)r^{p}\mathcal{K}_{p}(r), \qquad g_{2}(r)=\frac{ (\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r) )^{2}}{r^{p-1}}, \\ &\frac{g'_{1}(r)}{g'_{2}(r)}=\frac{r^{2p-1}}{(1-r^{p}) (\mathcal{E}_{p}(r)-(1+r^{p})\mathcal{K}_{p}(r) )}=\frac{1}{J(r)}, \end{aligned} $$
(3.4)
where \(J(r)\) is defined by (2.9).
From (1.3), (1.6), (1.7), and Lemma 2.1 we clearly see that
$$ g_{1}\bigl(0^{+}\bigr)=g_{2} \bigl(0^{+}\bigr)=0. $$
(3.5)
Equations (3.3)–(3.5) and Lemmas 2.3 and 2.4 lead to the conclusion that the function \(\frac{d}{dr} (1/f_{p}^{1}(r) )\) is strictly decreasing on \((0, 1)\), which implies that the function \(\frac{d}{dr} (1/f_{p}^{1}(r') )\) is strictly increasing on \((0, 1)\) and \(1/f^{1}_{a}(r')\) is convex on \((0,1)\).
Therefore, \(f_{p}(r)\) is convex on \((0, 1)\) follows from Lemmas 2.1 and 2.2 together with (3.2) and the convexity of \(1/f^{1}_{a}(r')\).
The limit values
$$ f_{p}\bigl(0^{+}\bigr)=\frac{(p-1)\pi_{p}}{2p}, \qquad f_{p}\bigl(1^{-}\bigr)=\frac{2p}{(p-1)\pi_{p}} $$
(3.6)
follow easily from Lemma 2.1 and (3.2).
It follows from (2.8) and (3.2) that
$$\begin{aligned} &\lim_{r\rightarrow 0^{+}}\frac{df_{p}(r)}{dr} \\ &\quad =\lim_{r\rightarrow 0^{+}}\frac{\sum_{n=0}^{\infty}\frac{a_{n}}{n+1}(1-r^{p})^{n}\sum_{n=1}^{\infty}\frac{pna_{n}}{n+1}r^{pn-1} +r^{p-1}\sum_{n=0}^{\infty}\frac{a_{n}}{n+1}r^{pn}\sum_{n=1}^{\infty}\frac{pna_{n}}{n+1}(1-r^{p})^{n-1}}{ [\sum_{n=0}^{\infty}\frac{a_{n}}{n+1}(1-r^{p})^{n} ]^{2}} \\ &\quad=0. \end{aligned}$$
(3.7)
Therefore, inequality (3.1) holds for all \(r\in(0,1)\) if and only if \(\alpha\leq 0\), and \(\beta\geq 2p/[(p-1)\pi_{p}]-((p-1)\pi_{p}/(2p)\) follows easily from (3.6) and (3.7) together with the monotonicity and convexity of \(f_{p}(r)\) on \((0, 1)\). From (3.6) we clearly see that both inequalities in (3.1) are sharp as \(r\rightarrow 0\) and the second inequality is sharp as \(r\rightarrow 1\). □
Theorem 3.2
Let \(p\geq 2\) and \(g_{p}(r)\) be defined in (1.11). Then \(g_{p}(r)\) is strictly increasing and convex from \((0,1)\) onto \(((p-1)\pi_{p}/(2p)-1, 1-(p-1)\pi_{p}/(2p))\), and the double inequality
$$ \frac{(p-1)\pi_{p}}{2p}-1+\alpha r< g_{p}(r)< \frac{(p-1)\pi_{p}}{2p}-1+\beta r $$
(3.8)
holds for all \(r \in (0, 1)\) if and only if \(\alpha\leq 0\) and \(\beta\geq 2-(p-1)\pi_{p}/p\). Moreover, both inequalities in (3.8) are sharp as \(r\rightarrow 0\), while the second inequality is sharp as \(r\rightarrow 1\).
Proof
Let
$$ M_{p}(r)=\frac{\pi_{p}}{2r^{p}} \biggl[F \biggl(\frac{1}{p},- \frac{1}{p};1;r^{p} \biggr)-r^{\prime p}F \biggl(\frac{1}{p},1-\frac{1}{p};1;r^{p} \biggr) \biggr]. $$
Then from (1.3), (1.6), (1.7), and (1.11) we get
$$\begin{aligned} & M_{p}(r)=\frac{\pi_{p}(p-1)}{2p}F \biggl(1- \frac{1}{p},\frac{1}{p};2;r^{p} \biggr), \end{aligned}$$
(3.9)
$$\begin{aligned} &\begin{aligned}[b] g_{p}(r)&=M_{p}(r)-M_{p} \bigl(r'\bigr)\\ &=\frac{\pi_{p}(p-1)}{2p} \biggl[F \biggl(1- \frac{1}{p},\frac{1}{p};2;r^{p} \biggr)-F \biggl(1- \frac{1}{p},\frac{1}{p};2;1-r^{p} \biggr) \biggr]. \end{aligned} \end{aligned}$$
(3.10)
It follows from (2.1), (2.2), (2.5), and (3.10) that
$$\begin{aligned} &\frac{dg_{p}(r)}{dr}=\frac{(p-1)^{2}\pi_{p}}{4p^{2}}r^{p-1} \biggl[F \biggl(2- \frac{1}{p}, 1+\frac{1}{p};3;r^{p} \biggr)+F \biggl(2- \frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr) \biggr], \\ &\frac{dg_{p}(r)}{dr}|_{r=0}=0, \end{aligned}$$
(3.11)
$$\begin{aligned} &\begin{aligned}[b] \frac{d^{2}g_{p}(r)}{dr^{2}}={}&\frac{(p-1)^{3}\pi_{p}}{4p^{2}}r^{p-2} \biggl[F \biggl(2- \frac{1}{p},1+\frac{1}{p};3;r^{p} \biggr)+F \biggl(2- \frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr) \\ &{}+\frac{\pi_{p}(p-1)^{2}(1+p)(2p-1)}{12p^{3}}r^{2p-2} \\ &{}\times\biggl(F \biggl(3-\frac{1}{p},2+ \frac{1}{p};4;r^{p} \biggr) -F \biggl(3-\frac{1}{p},2+ \frac{1}{p};4;1-r^{p} \biggr) \biggr) \biggr], \end{aligned} \end{aligned}$$
(3.12)
$$\begin{aligned} &F \biggl(3-\frac{1}{p},2+\frac{1}{p};4;1-r^{p} \biggr)=\frac{1}{r^{p}}F \biggl(2-\frac{1}{p},1+\frac{1}{p};4;1-r^{p} \biggr), \end{aligned}$$
(3.13)
$$\begin{aligned} &\begin{aligned}[b] &\biggl(2-\frac{1}{p} \biggr)F \biggl(2- \frac{1}{p},1+\frac{1}{p};4;1-r^{p} \biggr) \\ &\quad =3F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr) - \biggl(1+\frac{1}{p} \biggr)F \biggl(2-\frac{1}{p},2+ \frac{1}{p};4;1-r^{p} \biggr). \end{aligned} \end{aligned}$$
(3.14)
Equations (1.3) and (3.12)–(3.14) lead to
$$\begin{aligned} &\frac{4p^{2}}{(p-1)^{2}\pi_{p}}r^{p-2}g''_{p}(r) \\ &\quad = (p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;r^{p} \biggr) +(p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr) \\ &\qquad {}+\frac{(2p-1)(p+1)}{3p}r^{p}F \biggl(3-\frac{1}{p},2+ \frac{1}{p};4;r^{p} \biggr) \\ &\qquad {}-r^{p}\frac{(2p-1)(p+1)}{3p}F \biggl(3-\frac{1}{p},2+\frac{1}{p};4;1-r^{p} \biggr) \\ &\quad = (p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;r^{p} \biggr)+(p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr) \\ &\qquad {}+\frac{(2p-1)(p+1)}{3p}r^{p}F \biggl(3-\frac{1}{p},2+ \frac{1}{p};4;r^{p} \biggr) \\ &\qquad {} -\frac{(2p-1)(p+1)}{3p}F \biggl(2- \frac{1}{p},1+\frac{1}{p};4;1-r^{p} \biggr) \\ &\quad = (p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;r^{p} \biggr)+\frac{(2p-1)(p+1)}{3p}r^{p}F \biggl(3-\frac{1}{p},2+ \frac{1}{p};4;r^{p} \biggr) \\ &\qquad {}+(p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr)-(2p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr) \\ &\qquad {}+\frac{(2p-1)^{2}}{3p}F \biggl(3-\frac{1}{p},1+\frac{1}{p};4;1-r^{p} \biggr) \\ &\quad = (p-1)F \biggl(2-\frac{1}{p},1+\frac{1}{p};3;r^{p} \biggr)+\frac{(2p-1)(p+1)}{3p}r^{p}F \biggl(3-\frac{1}{p},2+ \frac{1}{p};4;r^{p} \biggr) \\ &\qquad {}-pF \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr)+\frac{(2p-1)^{2}}{3p}F \biggl(1+\frac{1}{p},3-\frac{1}{p};4;1-r^{p} \biggr) \\ &\quad > p-1-pF \biggl(2-\frac{1}{p},1+\frac{1}{p};3;1-r^{p} \biggr)+\frac{(2p-1)^{2}}{3p}F \biggl(1+\frac{1}{p},3-\frac{1}{p};4;1-r^{p} \biggr) \\ &\quad = p-1-p\sum_{n=0}^{\infty}\frac{(1+\frac{1}{p},n)(2-\frac{1}{p},n)}{(3,n)} \frac{(1-r^{p})^{n}}{n!} \\ &\qquad {}+\frac{(2p-1)^{2}}{3p}\sum_{n=0}^{\infty} \frac{(1+\frac{1}{p},n)(3-\frac{1}{p},n)}{(4,n)}\frac{(1-r^{p})^{n}}{n!} \\ &\quad = \sum_{n=0}^{\infty}\frac{(1+\frac{1}{p},n)(2-\frac{1}{p},n)}{(3,n+1)} \biggl[(p-1)n+p+\frac{1}{p}-4 \biggr]\frac{(1-r^{p})^{n}}{n!} \\ &\quad \geq \sum_{n=0}^{1}\frac{(1+\frac{1}{p},n)(2-\frac{1}{p},n)}{(3,n+1)} \biggl[(p-1)n+p+\frac{1}{p}-4 \biggr]\frac{(1-r^{p})^{n}}{n!} \\ &\quad = \frac{20p^{4}-36p^{3}-p^{2}+6p-1}{12p^{3}}>0 \end{aligned}$$
(3.15)
for \(p\geq 2\).
Therefore, the monotonicity and convexity for \(g_{p}(r)\) on the interval \((0, 1)\) follow from (3.11) and (3.15).
It follows from (1.2), (1.3), (2.3), (3.9), and (3.10) that
$$ \begin{aligned} &M_{p}\bigl(0^{+}\bigr)=\frac{(p-1)\pi_{p}}{2p}, \qquad M_{p}\bigl(1^{-}\bigr)=1, \\ &g_{p}\bigl(0^{+}\bigr)=\frac{(p-1)\pi_{p}}{2p}-1, \qquad g_{p}\bigl(1^{-}\bigr)=1-\frac{(p-1)\pi_{p}}{2p}. \end{aligned} $$
(3.16)
Therefore, the desired results in Theorem 3.2 follow easily from (3.11) and (3.16) together with the monotonicity and convexity of \(g_{p}(r)\) on the interval \((0, 1)\). □
Remark 3.3
Let \(p=2\). Then we clearly see that inequalities (3.1) and (3.8) reduce to inequalities (1.8) and (1.9), respectively.
Corollary 3.4
Let \(p\geq 2\), \(g_{p}(r)\) be defined by (1.11) and
$$ L_{p}(x,y)=g_{p}(xy)-g_{p}(x)-g_{p}(y). $$
(3.17)
Then the double inequality
$$ \frac{(p-1)\pi_{p}}{2p}-1< L_{p}(x,y)< 1-\frac{(p-1)\pi_{p}}{2p} $$
holds for all \(x,y\in (0,1)\).
Proof
It follows from (3.17) and the proof of Theorem 3.2 that
$$\begin{aligned} &\frac{\partial}{\partial x}L_{p}(x,y)=yg'_{p}(xy)-g'_{p}(x), \end{aligned}$$
(3.18)
$$\begin{aligned} &\frac{\partial^{2}}{\partial x\partial y}L_{p}(x,y)=g'_{p}(xy)+xyg''_{p}(xy)>0 \end{aligned}$$
(3.19)
for all \(x, y\in (0, 1)\).
From (3.17)–(3.19) we get
$$ \begin{aligned} &\frac{\partial}{\partial x}L_{p}(x,y)< \frac{\partial}{\partial x}L_{p}(x,y)|_{y=1}=0, \\ &{-}g_{p}(1)=L_{p}(1,y)< L_{p}(x,y)< L_{p}(0,y)=-g_{p}(y). \end{aligned} $$
(3.20)
Therefore, Corollary 3.4 follows easily from Theorem 3.2 and (3.20). □

4 Methods

The main purpose of the article is to generalize inequalities (1.8) and (1.9) for the complete elliptic integrals to the complete p-elliptic integrals. To achieve this goal we discuss the monotonicity and convexity properties for the functions given by (1.10) and (1.11) by use of the analytical properties of the Gaussian hypergeometric function and the well-known monotone form of l’Hôpital’s rule given in [5, Theorem 1.25].

5 Results and discussion

In the article, we present the monotonicity and convexity properties and provide the sharp bounds for the functions
$$ r\mapsto f_{p}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r)}{r^{p}}\cdot\frac{r^{\prime p}}{\mathcal{E'}_{p}(r)-r^{p}\mathcal{K'}_{p}(r)} $$
and
$$ r\mapsto g_{p}(r)=\frac{\mathcal{E}_{p}(r)-r^{\prime p}\mathcal{K}_{p}(r)}{r^{p}}-\frac{\mathcal{E'}_{p}(r)-r^{p}\mathcal{K'}_{p}(r)}{r^{\prime p}} $$
on the interval \((0, 1)\).
The obtained results are the generalization of the well-known results on the classical complete elliptic integrals given in [32, 33].

6 Conclusion

In this paper, we generalize the monotonicity, convexity, and bounds for the functions involving the complete elliptic integrals to the complete p-elliptic integrals. The given idea may stimulate further research in the theory of generalized elliptic integrals.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
2.
go back to reference Edmunds, D.E., Gurka, P., Lang, J.: Properties of generalized trigonometric functions. J. Approx. Theory 164(1), 47–56 (2012) MathSciNetCrossRefMATH Edmunds, D.E., Gurka, P., Lang, J.: Properties of generalized trigonometric functions. J. Approx. Theory 164(1), 47–56 (2012) MathSciNetCrossRefMATH
3.
go back to reference Edmunds, D.E., Gurka, P., Lang, J.: Basis properties of generalized trigonometric functions. J. Math. Anal. Appl. 420(2), 1680–1692 (2014) MathSciNetCrossRefMATH Edmunds, D.E., Gurka, P., Lang, J.: Basis properties of generalized trigonometric functions. J. Math. Anal. Appl. 420(2), 1680–1692 (2014) MathSciNetCrossRefMATH
4.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965) MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965) MATH
5.
go back to reference Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH
6.
go back to reference Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971) CrossRefMATH Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971) CrossRefMATH
7.
go back to reference Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATH Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATH
8.
go back to reference Wang, M.-K., Chu, Y.-M., Song, Y.-Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNet Wang, M.-K., Chu, Y.-M., Song, Y.-Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNet
9.
go back to reference Wang, M.-K., Li, Y.-M., Chu, Y.-M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018) MathSciNetCrossRefMATH Wang, M.-K., Li, Y.-M., Chu, Y.-M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018) MathSciNetCrossRefMATH
10.
go back to reference Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bounds function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) MathSciNet Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bounds function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) MathSciNet
11.
go back to reference Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017) MathSciNetMATH Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017) MathSciNetMATH
12.
go back to reference Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521–527 (2012) MathSciNetCrossRefMATH Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521–527 (2012) MathSciNetCrossRefMATH
13.
go back to reference Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Qiu, Y.-F.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MathSciNetMATH Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Qiu, Y.-F.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MathSciNetMATH
14.
go back to reference Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017) MathSciNetCrossRefMATH Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017) MathSciNetCrossRefMATH
15.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic–geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRefMATH Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic–geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRefMATH
16.
go back to reference Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1987) MATH Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1987) MATH
17.
go back to reference Liu, Z.-Q., Zhang, X.-H.: On a function involving the complete p-elliptic integrals. Pure Math. 8(4), 325–332 (2018) (in Chinese) CrossRef Liu, Z.-Q., Zhang, X.-H.: On a function involving the complete p-elliptic integrals. Pure Math. 8(4), 325–332 (2018) (in Chinese) CrossRef
18.
go back to reference Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K., Vuroinen, M.: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1–37 (2000) MathSciNetCrossRef Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K., Vuroinen, M.: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1–37 (2000) MathSciNetCrossRef
19.
go back to reference Bhayo, B.A., Vuorinen, M.: On generalized complete elliptic integrals and modular functions. Proc. Edinb. Math. Soc. (2) 55(3), 591–611 (2012) MathSciNetCrossRefMATH Bhayo, B.A., Vuorinen, M.: On generalized complete elliptic integrals and modular functions. Proc. Edinb. Math. Soc. (2) 55(3), 591–611 (2012) MathSciNetCrossRefMATH
21.
go back to reference Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetCrossRefMATH Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetCrossRefMATH
22.
go back to reference Heikkala, V., Lindén, H., Vamanamurthy, M.K., Vuorinen, M.: Generalized elliptic integrals and the Legendre \(\mathcal{M}\)-function. J. Math. Anal. Appl. 338(1), 223–243 (2008) MathSciNetCrossRefMATH Heikkala, V., Lindén, H., Vamanamurthy, M.K., Vuorinen, M.: Generalized elliptic integrals and the Legendre \(\mathcal{M}\)-function. J. Math. Anal. Appl. 338(1), 223–243 (2008) MathSciNetCrossRefMATH
23.
go back to reference Kamiya, T., Takeuchi, S.: Complete \((p, q)\)-elliptic integrals with application to a family of means. J. Class. Anal. 10(1), 15–25 (2017) MathSciNet Kamiya, T., Takeuchi, S.: Complete \((p, q)\)-elliptic integrals with application to a family of means. J. Class. Anal. 10(1), 15–25 (2017) MathSciNet
24.
25.
go back to reference Takeuchi, S.: Complete p-elliptic integrals and a computation formula of \(\pi_{p}\) for \(p=1\). Ramanujan J. 46(2), 309–321 (2018) MathSciNetCrossRefMATH Takeuchi, S.: Complete p-elliptic integrals and a computation formula of \(\pi_{p}\) for \(p=1\). Ramanujan J. 46(2), 309–321 (2018) MathSciNetCrossRefMATH
26.
go back to reference Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetCrossRefMATH Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetCrossRefMATH
27.
go back to reference Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014) MathSciNetCrossRefMATH Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014) MathSciNetCrossRefMATH
28.
29.
go back to reference Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautsch inequality for parameter \(0< p<1\). Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautsch inequality for parameter \(0< p<1\). Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH
30.
go back to reference Zhang, X.-H.: Monotonicity and functional inequalities for the complete p-elliptic integrals. J. Math. Anal. Appl. 453(2), 942–953 (2017) MathSciNetCrossRefMATH Zhang, X.-H.: Monotonicity and functional inequalities for the complete p-elliptic integrals. J. Math. Anal. Appl. 453(2), 942–953 (2017) MathSciNetCrossRefMATH
32.
go back to reference Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K.: Elliptic integrals inequalities, with applications. Constr. Approx. 14(2), 195–207 (1998) MathSciNetCrossRefMATH Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K.: Elliptic integrals inequalities, with applications. Constr. Approx. 14(2), 195–207 (1998) MathSciNetCrossRefMATH
33.
go back to reference Alzer, H., Richards, K.: A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities. Anal. Math. 41(3), 133–139 (2015) MathSciNetCrossRefMATH Alzer, H., Richards, K.: A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities. Anal. Math. 41(3), 133–139 (2015) MathSciNetCrossRefMATH
34.
go back to reference Huang, T.-R., Tan, S.-Y., Zhang, X.-H.: Monotonicity, convexity, and inequalities for the generalized elliptic integrals. J. Inequal. Appl. 2017, Article ID 278 (2017) MathSciNetCrossRefMATH Huang, T.-R., Tan, S.-Y., Zhang, X.-H.: Monotonicity, convexity, and inequalities for the generalized elliptic integrals. J. Inequal. Appl. 2017, Article ID 278 (2017) MathSciNetCrossRefMATH
35.
go back to reference Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 3. Gordon & Breach, New York (1990) MATH Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 3. Gordon & Breach, New York (1990) MATH
Metadata
Title
Monotonicity properties and bounds for the complete p-elliptic integrals
Authors
Ti-Ren Huang
Shen-Yang Tan
Xiao-Yan Ma
Yu-Ming Chu
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1828-2

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner