Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

04-08-2018 | Original Article | Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

Shilling attack based on item popularity and rated item correlation against collaborative filtering

Journal:
International Journal of Machine Learning and Cybernetics > Issue 7/2019
Authors:
Keke Chen, Patrick P. K. Chan, Fei Zhang, Qiaoqiao Li
Important notes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Although collaborative filtering achieves satisfying performance in recommender systems, many studies suggest that it is vulnerable by shilling attack aimed to manipulate the recommending frequency of a target item by injecting malicious user profiles. The existing attack methods usually generate malicious profiles by rating the item selected randomly. However, as these rating patterns are different from the real users, who have their own preferences on items, these attack methods can be easily detected by shilling attack detection, which significantly reduces the attack ability. Although some attack methods consider disguise ability, these methods require too much information from real users. This study proposes a shilling attack which generates malicious samples with strong attack ability and similarity to real users. To imitate the rating behavior of genuine users, our attack model considers both rated item correlation and item popularity when choosing items to rate. The profiles generated by our attack model is expected to be more similar to real user profiles, which increases the disguise ability. We also investigate whether and how rated item correlation of real user profiles is different from the ones generated by our method and the existing shilling attack. The experimental results confirm that our method achieves the highest attack ability after removing the suspected profiles identified by PCA-based and SVM-based shilling attack detection. The study confirms the correlation of rated item is a critical factor of the robustness of recommender systems.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue