Skip to main content
Top
Published in: Strength of Materials 5/2019

06-12-2019

Short-Term Creep of St3 Steel Under Low-Frequency Cyclic Loading

Authors: D. V. Breslavs’kyi, V. O. Metel’yov, O. K. Morachkovs’kyi, O. A. Tatarinova

Published in: Strength of Materials | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Creep constitutive equations have been derived for the materials that exhibit the properties of orthotropy (transversal isotropy) and transient creep under cyclic loading. A low-frequency case is considered. The paper provides results of experimental studies of the short-term creep of St3 steel under static and stepwise cyclic loading at room temperature. The results of calculations by the proposed constitutive equations are compared with the experimental data. A good agreement has been found for the number of cycles above 4 or 5, which demonstrates the applicability of the proposed constitutive equation to the low-frequency creep calculations for sheet materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. H. Wagoner and J. L. Chenot, Metal Forming Analysis, Cambridge University Press, Cambridge (2001).CrossRef R. H. Wagoner and J. L. Chenot, Metal Forming Analysis, Cambridge University Press, Cambridge (2001).CrossRef
2.
go back to reference G. S. Pisarenko and N. S. Mozharovskii, Equations and Boundary Problems of the Theory of Plasticity and Creep [in Russian], Naukova Dumka, Kiev (1981). G. S. Pisarenko and N. S. Mozharovskii, Equations and Boundary Problems of the Theory of Plasticity and Creep [in Russian], Naukova Dumka, Kiev (1981).
3.
go back to reference L. Zhan, J. Lin, and T. A. Dean, “A review of the development of creep age forming: Experimentation, modelling and applications,” Int. J. Mach. Tool. Manu., 51, 1–17 (2011).CrossRef L. Zhan, J. Lin, and T. A. Dean, “A review of the development of creep age forming: Experimentation, modelling and applications,” Int. J. Mach. Tool. Manu., 51, 1–17 (2011).CrossRef
4.
go back to reference N. K. Kucher, M. P. Zemtsov, and E. L. Danil’chuk, “Short-term creep and strength of fibrous polypropylene structures,” Strength Mater., 39, No. 6, 620–629 (2007).CrossRef N. K. Kucher, M. P. Zemtsov, and E. L. Danil’chuk, “Short-term creep and strength of fibrous polypropylene structures,” Strength Mater., 39, No. 6, 620–629 (2007).CrossRef
5.
go back to reference A. A. Lebedev, F. F. Giginyak, and V. V. Bashta, “Cyclic creep of body steels under a complex stress system in the temperatures range 20–400_C,” Strength Mater., 10, No. 10, 1128–1131 (1978). A. A. Lebedev, F. F. Giginyak, and V. V. Bashta, “Cyclic creep of body steels under a complex stress system in the temperatures range 20–400_C,” Strength Mater., 10, No. 10, 1128–1131 (1978).
6.
go back to reference Ya. I. Tsimbalistyi, I. A. Troyan, and O. I. Marusii, “Investigation of the vibrocreep of alloy ÉI437B at normal and high temperatures,” Strength Mater., 7, No. 11, 1331–1335 (1975). Ya. I. Tsimbalistyi, I. A. Troyan, and O. I. Marusii, “Investigation of the vibrocreep of alloy ÉI437B at normal and high temperatures,” Strength Mater., 7, No. 11, 1331–1335 (1975).
7.
go back to reference A. Oehlert and A. Atrens, “Room temperature creep of high strength steels,” Acta Metall. Mater., 42, No. 5, 1493–1508 (1994).CrossRef A. Oehlert and A. Atrens, “Room temperature creep of high strength steels,” Acta Metall. Mater., 42, No. 5, 1493–1508 (1994).CrossRef
8.
go back to reference N. Tsuchida, N. Nagahisa, and S. Harjo, “Room-temperature creep tests under constant load on a TRIP-aided multi-microstructure steel”, Mater. Sci. Eng. A, 700, 631–636 (2017).CrossRef N. Tsuchida, N. Nagahisa, and S. Harjo, “Room-temperature creep tests under constant load on a TRIP-aided multi-microstructure steel”, Mater. Sci. Eng. A, 700, 631–636 (2017).CrossRef
9.
go back to reference D. Nie, J. Zhao, T. Mo, and W. X. Chen, “Room temperature creep and its effect on flow stress in a X70 pipeline steel,” Mater. Lett., 62, No. 1, 51–53 (2008).CrossRef D. Nie, J. Zhao, T. Mo, and W. X. Chen, “Room temperature creep and its effect on flow stress in a X70 pipeline steel,” Mater. Lett., 62, No. 1, 51–53 (2008).CrossRef
10.
go back to reference C. Liu, P. Liu, Z. Zhao, and D. O. Northwood, “Room temperature creep of a high strength steel,” Mater. Design, 22, No. 4, 325–328 (2001).CrossRef C. Liu, P. Liu, Z. Zhao, and D. O. Northwood, “Room temperature creep of a high strength steel,” Mater. Design, 22, No. 4, 325–328 (2001).CrossRef
11.
go back to reference C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini, “Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel,” Eng. Fail. Anal., 79, 385–396 (2017).CrossRef C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini, “Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel,” Eng. Fail. Anal., 79, 385–396 (2017).CrossRef
12.
go back to reference U. Kivisäkk, “Relation of room temperature creep and microhardness to microstructure and HISC,” Mater. Sci. Eng. A, 527, Nos. 29–30,7684–7688 (2010).CrossRef U. Kivisäkk, “Relation of room temperature creep and microhardness to microstructure and HISC,” Mater. Sci. Eng. A, 527, Nos. 29–30,7684–7688 (2010).CrossRef
13.
go back to reference J. L. Chaboche, “Cyclic viscoplastic constitutive equations. Part II: Stored energy – comparison between models and experiments,” J. Appl. Mech., 60, No. 4, 822–828 (1993).CrossRef J. L. Chaboche, “Cyclic viscoplastic constitutive equations. Part II: Stored energy – comparison between models and experiments,” J. Appl. Mech., 60, No. 4, 822–828 (1993).CrossRef
14.
go back to reference J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive equations,” Int. J. Plasticity, 24, No. 10, 1642–1693 (2008). J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive equations,” Int. J. Plasticity, 24, No. 10, 1642–1693 (2008).
15.
go back to reference V. A. Stryzhalo, Cyclic Strength and Creep of Metals under Low-Cycle Loading at Low and High Temperatures [in Russian], Naukova Dumka, Kiev (1978). V. A. Stryzhalo, Cyclic Strength and Creep of Metals under Low-Cycle Loading at Low and High Temperatures [in Russian], Naukova Dumka, Kiev (1978).
16.
go back to reference M. P. Adamchuk, M. V. Borodii, O. M. Selin, and V. O. Stryzhalo, “Development of the model for cyclic plasticity to describe the ratcheting effect under non-proportional asymmetric loading,” Strength Mater., 48, No. 2, 251–258 (2016).CrossRef M. P. Adamchuk, M. V. Borodii, O. M. Selin, and V. O. Stryzhalo, “Development of the model for cyclic plasticity to describe the ratcheting effect under non-proportional asymmetric loading,” Strength Mater., 48, No. 2, 251–258 (2016).CrossRef
17.
go back to reference D. Breslavsky, O. Morachkovsky, and O. Tatarinova, “Creep and damage in shells of revolution under cyclic loading and heating,” Int. J. Nonlin. Mech., 66, 87–95 (2014).CrossRef D. Breslavsky, O. Morachkovsky, and O. Tatarinova, “Creep and damage in shells of revolution under cyclic loading and heating,” Int. J. Nonlin. Mech., 66, 87–95 (2014).CrossRef
18.
go back to reference J. Fish, M. Bailakanavar, L. Powers, and T. Cook, “Multiscale fatigue life prediction model for heterogeneous materials,” Int. J. Numer. Meth. Eng., 91, No. 10, 1087–1104 (2012).CrossRef J. Fish, M. Bailakanavar, L. Powers, and T. Cook, “Multiscale fatigue life prediction model for heterogeneous materials,” Int. J. Numer. Meth. Eng., 91, No. 10, 1087–1104 (2012).CrossRef
19.
go back to reference G. Puel and D. Aubry, “Material fatigue simulation using a periodic time homogenization method,” Eur. J. Comput. Mech., 21, Nos. 3–6, 312–324 (2012).CrossRef G. Puel and D. Aubry, “Material fatigue simulation using a periodic time homogenization method,” Eur. J. Comput. Mech., 21, Nos. 3–6, 312–324 (2012).CrossRef
20.
go back to reference D. V. Breslavs’kyi, V. M. Konkin, and V. O. Metel’yov, “Room-temperature plasticity and creep of St3 steel,” Visn. NTU “KhPI,” Dynam. Mitsn. Mashin, 57, No. 1166, 14–19 (2015). D. V. Breslavs’kyi, V. M. Konkin, and V. O. Metel’yov, “Room-temperature plasticity and creep of St3 steel,” Visn. NTU “KhPI,” Dynam. Mitsn. Mashin, 57, No. 1166, 14–19 (2015).
21.
go back to reference O. Morachkovsky, H. Altenbach, and M. Pasynok, “Computational modeling of creep damage evolution in transversally-isotropic structures,” in: Dynamics and Strength of Machines [in Russian], No. 56, Kharkov (1998), pp. 9–18. O. Morachkovsky, H. Altenbach, and M. Pasynok, “Computational modeling of creep damage evolution in transversally-isotropic structures,” in: Dynamics and Strength of Machines [in Russian], No. 56, Kharkov (1998), pp. 9–18.
22.
go back to reference D. V. Breslavsky, O. K. Morachkovsky, and O. A. Tatarinova, “High-temperature creep and long-term strength of structural elements under cyclic loading,” Strength Mater., 40, No 5, 531–537 (2008).CrossRef D. V. Breslavsky, O. K. Morachkovsky, and O. A. Tatarinova, “High-temperature creep and long-term strength of structural elements under cyclic loading,” Strength Mater., 40, No 5, 531–537 (2008).CrossRef
Metadata
Title
Short-Term Creep of St3 Steel Under Low-Frequency Cyclic Loading
Authors
D. V. Breslavs’kyi
V. O. Metel’yov
O. K. Morachkovs’kyi
O. A. Tatarinova
Publication date
06-12-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 5/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00124-2

Other articles of this Issue 5/2019

Strength of Materials 5/2019 Go to the issue

Premium Partners