Skip to main content
Erschienen in: Strength of Materials 5/2019

06.12.2019

Short-Term Creep of St3 Steel Under Low-Frequency Cyclic Loading

verfasst von: D. V. Breslavs’kyi, V. O. Metel’yov, O. K. Morachkovs’kyi, O. A. Tatarinova

Erschienen in: Strength of Materials | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Creep constitutive equations have been derived for the materials that exhibit the properties of orthotropy (transversal isotropy) and transient creep under cyclic loading. A low-frequency case is considered. The paper provides results of experimental studies of the short-term creep of St3 steel under static and stepwise cyclic loading at room temperature. The results of calculations by the proposed constitutive equations are compared with the experimental data. A good agreement has been found for the number of cycles above 4 or 5, which demonstrates the applicability of the proposed constitutive equation to the low-frequency creep calculations for sheet materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. H. Wagoner and J. L. Chenot, Metal Forming Analysis, Cambridge University Press, Cambridge (2001).CrossRef R. H. Wagoner and J. L. Chenot, Metal Forming Analysis, Cambridge University Press, Cambridge (2001).CrossRef
2.
Zurück zum Zitat G. S. Pisarenko and N. S. Mozharovskii, Equations and Boundary Problems of the Theory of Plasticity and Creep [in Russian], Naukova Dumka, Kiev (1981). G. S. Pisarenko and N. S. Mozharovskii, Equations and Boundary Problems of the Theory of Plasticity and Creep [in Russian], Naukova Dumka, Kiev (1981).
3.
Zurück zum Zitat L. Zhan, J. Lin, and T. A. Dean, “A review of the development of creep age forming: Experimentation, modelling and applications,” Int. J. Mach. Tool. Manu., 51, 1–17 (2011).CrossRef L. Zhan, J. Lin, and T. A. Dean, “A review of the development of creep age forming: Experimentation, modelling and applications,” Int. J. Mach. Tool. Manu., 51, 1–17 (2011).CrossRef
4.
Zurück zum Zitat N. K. Kucher, M. P. Zemtsov, and E. L. Danil’chuk, “Short-term creep and strength of fibrous polypropylene structures,” Strength Mater., 39, No. 6, 620–629 (2007).CrossRef N. K. Kucher, M. P. Zemtsov, and E. L. Danil’chuk, “Short-term creep and strength of fibrous polypropylene structures,” Strength Mater., 39, No. 6, 620–629 (2007).CrossRef
5.
Zurück zum Zitat A. A. Lebedev, F. F. Giginyak, and V. V. Bashta, “Cyclic creep of body steels under a complex stress system in the temperatures range 20–400_C,” Strength Mater., 10, No. 10, 1128–1131 (1978). A. A. Lebedev, F. F. Giginyak, and V. V. Bashta, “Cyclic creep of body steels under a complex stress system in the temperatures range 20–400_C,” Strength Mater., 10, No. 10, 1128–1131 (1978).
6.
Zurück zum Zitat Ya. I. Tsimbalistyi, I. A. Troyan, and O. I. Marusii, “Investigation of the vibrocreep of alloy ÉI437B at normal and high temperatures,” Strength Mater., 7, No. 11, 1331–1335 (1975). Ya. I. Tsimbalistyi, I. A. Troyan, and O. I. Marusii, “Investigation of the vibrocreep of alloy ÉI437B at normal and high temperatures,” Strength Mater., 7, No. 11, 1331–1335 (1975).
7.
Zurück zum Zitat A. Oehlert and A. Atrens, “Room temperature creep of high strength steels,” Acta Metall. Mater., 42, No. 5, 1493–1508 (1994).CrossRef A. Oehlert and A. Atrens, “Room temperature creep of high strength steels,” Acta Metall. Mater., 42, No. 5, 1493–1508 (1994).CrossRef
8.
Zurück zum Zitat N. Tsuchida, N. Nagahisa, and S. Harjo, “Room-temperature creep tests under constant load on a TRIP-aided multi-microstructure steel”, Mater. Sci. Eng. A, 700, 631–636 (2017).CrossRef N. Tsuchida, N. Nagahisa, and S. Harjo, “Room-temperature creep tests under constant load on a TRIP-aided multi-microstructure steel”, Mater. Sci. Eng. A, 700, 631–636 (2017).CrossRef
9.
Zurück zum Zitat D. Nie, J. Zhao, T. Mo, and W. X. Chen, “Room temperature creep and its effect on flow stress in a X70 pipeline steel,” Mater. Lett., 62, No. 1, 51–53 (2008).CrossRef D. Nie, J. Zhao, T. Mo, and W. X. Chen, “Room temperature creep and its effect on flow stress in a X70 pipeline steel,” Mater. Lett., 62, No. 1, 51–53 (2008).CrossRef
10.
Zurück zum Zitat C. Liu, P. Liu, Z. Zhao, and D. O. Northwood, “Room temperature creep of a high strength steel,” Mater. Design, 22, No. 4, 325–328 (2001).CrossRef C. Liu, P. Liu, Z. Zhao, and D. O. Northwood, “Room temperature creep of a high strength steel,” Mater. Design, 22, No. 4, 325–328 (2001).CrossRef
11.
Zurück zum Zitat C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini, “Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel,” Eng. Fail. Anal., 79, 385–396 (2017).CrossRef C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini, “Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel,” Eng. Fail. Anal., 79, 385–396 (2017).CrossRef
12.
Zurück zum Zitat U. Kivisäkk, “Relation of room temperature creep and microhardness to microstructure and HISC,” Mater. Sci. Eng. A, 527, Nos. 29–30,7684–7688 (2010).CrossRef U. Kivisäkk, “Relation of room temperature creep and microhardness to microstructure and HISC,” Mater. Sci. Eng. A, 527, Nos. 29–30,7684–7688 (2010).CrossRef
13.
Zurück zum Zitat J. L. Chaboche, “Cyclic viscoplastic constitutive equations. Part II: Stored energy – comparison between models and experiments,” J. Appl. Mech., 60, No. 4, 822–828 (1993).CrossRef J. L. Chaboche, “Cyclic viscoplastic constitutive equations. Part II: Stored energy – comparison between models and experiments,” J. Appl. Mech., 60, No. 4, 822–828 (1993).CrossRef
14.
Zurück zum Zitat J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive equations,” Int. J. Plasticity, 24, No. 10, 1642–1693 (2008). J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive equations,” Int. J. Plasticity, 24, No. 10, 1642–1693 (2008).
15.
Zurück zum Zitat V. A. Stryzhalo, Cyclic Strength and Creep of Metals under Low-Cycle Loading at Low and High Temperatures [in Russian], Naukova Dumka, Kiev (1978). V. A. Stryzhalo, Cyclic Strength and Creep of Metals under Low-Cycle Loading at Low and High Temperatures [in Russian], Naukova Dumka, Kiev (1978).
16.
Zurück zum Zitat M. P. Adamchuk, M. V. Borodii, O. M. Selin, and V. O. Stryzhalo, “Development of the model for cyclic plasticity to describe the ratcheting effect under non-proportional asymmetric loading,” Strength Mater., 48, No. 2, 251–258 (2016).CrossRef M. P. Adamchuk, M. V. Borodii, O. M. Selin, and V. O. Stryzhalo, “Development of the model for cyclic plasticity to describe the ratcheting effect under non-proportional asymmetric loading,” Strength Mater., 48, No. 2, 251–258 (2016).CrossRef
17.
Zurück zum Zitat D. Breslavsky, O. Morachkovsky, and O. Tatarinova, “Creep and damage in shells of revolution under cyclic loading and heating,” Int. J. Nonlin. Mech., 66, 87–95 (2014).CrossRef D. Breslavsky, O. Morachkovsky, and O. Tatarinova, “Creep and damage in shells of revolution under cyclic loading and heating,” Int. J. Nonlin. Mech., 66, 87–95 (2014).CrossRef
18.
Zurück zum Zitat J. Fish, M. Bailakanavar, L. Powers, and T. Cook, “Multiscale fatigue life prediction model for heterogeneous materials,” Int. J. Numer. Meth. Eng., 91, No. 10, 1087–1104 (2012).CrossRef J. Fish, M. Bailakanavar, L. Powers, and T. Cook, “Multiscale fatigue life prediction model for heterogeneous materials,” Int. J. Numer. Meth. Eng., 91, No. 10, 1087–1104 (2012).CrossRef
19.
Zurück zum Zitat G. Puel and D. Aubry, “Material fatigue simulation using a periodic time homogenization method,” Eur. J. Comput. Mech., 21, Nos. 3–6, 312–324 (2012).CrossRef G. Puel and D. Aubry, “Material fatigue simulation using a periodic time homogenization method,” Eur. J. Comput. Mech., 21, Nos. 3–6, 312–324 (2012).CrossRef
20.
Zurück zum Zitat D. V. Breslavs’kyi, V. M. Konkin, and V. O. Metel’yov, “Room-temperature plasticity and creep of St3 steel,” Visn. NTU “KhPI,” Dynam. Mitsn. Mashin, 57, No. 1166, 14–19 (2015). D. V. Breslavs’kyi, V. M. Konkin, and V. O. Metel’yov, “Room-temperature plasticity and creep of St3 steel,” Visn. NTU “KhPI,” Dynam. Mitsn. Mashin, 57, No. 1166, 14–19 (2015).
21.
Zurück zum Zitat O. Morachkovsky, H. Altenbach, and M. Pasynok, “Computational modeling of creep damage evolution in transversally-isotropic structures,” in: Dynamics and Strength of Machines [in Russian], No. 56, Kharkov (1998), pp. 9–18. O. Morachkovsky, H. Altenbach, and M. Pasynok, “Computational modeling of creep damage evolution in transversally-isotropic structures,” in: Dynamics and Strength of Machines [in Russian], No. 56, Kharkov (1998), pp. 9–18.
22.
Zurück zum Zitat D. V. Breslavsky, O. K. Morachkovsky, and O. A. Tatarinova, “High-temperature creep and long-term strength of structural elements under cyclic loading,” Strength Mater., 40, No 5, 531–537 (2008).CrossRef D. V. Breslavsky, O. K. Morachkovsky, and O. A. Tatarinova, “High-temperature creep and long-term strength of structural elements under cyclic loading,” Strength Mater., 40, No 5, 531–537 (2008).CrossRef
Metadaten
Titel
Short-Term Creep of St3 Steel Under Low-Frequency Cyclic Loading
verfasst von
D. V. Breslavs’kyi
V. O. Metel’yov
O. K. Morachkovs’kyi
O. A. Tatarinova
Publikationsdatum
06.12.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00124-2

Weitere Artikel der Ausgabe 5/2019

Strength of Materials 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.