Skip to main content
Erschienen in: Strength of Materials 5/2019

03.12.2019

Characterization of Aluminum Foam Impact Response

verfasst von: O. V. Byakova, G. V. Stepanov, A. O. Vlasov, V. E. Danylyuk, N. V. Semenov, O. M. Berezovs’kyi, S. V. Gnyloskurenko

Erschienen in: Strength of Materials | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper addresses the investigation of high-strain rate compressive behavior of Al foams subjected to impact at the intermediate striking velocity ranged from 40 to roughly about 80 m/s. Relatively ductile AlSiMg foam and high-strength AlZnMg foam, whose cell walls contain numerous brittle eutectic domains, are used in the experiments. Strain-rate sensitivity for different structural kinds of Al foams is determined by comparison of the plateau stress achieved at the dynamical and quasistatic compression. Difference in the dynamical response of these Al foams is revealed and clarified based on the strain rate and inertia effects under conditions of plastic cell collapse or brittle damage of the cell wall material induced by cracking of eutectic domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. F. Ashby, A. G. Evans, N. A. Fleck, et al., Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford (2000). M. F. Ashby, A. G. Evans, N. A. Fleck, et al., Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford (2000).
2.
Zurück zum Zitat J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, No. 6, 559–632 (2001).CrossRef J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, No. 6, 559–632 (2001).CrossRef
3.
Zurück zum Zitat L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press (1997). L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press (1997).
4.
Zurück zum Zitat V. Crupi, G. Epasto, and E. Guglielmino, “Impact response of aluminum sandwiches for light-weight ship structures,” Metals, 1, 98–112 (2011).CrossRef V. Crupi, G. Epasto, and E. Guglielmino, “Impact response of aluminum sandwiches for light-weight ship structures,” Metals, 1, 98–112 (2011).CrossRef
5.
Zurück zum Zitat J. Banhart, “Light-metal foams-history of innovation and technological challenges,” Adv. Eng. Mater., 15, No. 3, 82–111 (2013).CrossRef J. Banhart, “Light-metal foams-history of innovation and technological challenges,” Adv. Eng. Mater., 15, No. 3, 82–111 (2013).CrossRef
6.
Zurück zum Zitat B. A. Gama, T. A. Bogetti, B. K. Fink, et al., “Aluminum foam integral armor: a new dimension of armor design,” Compos. Struct., 52, Nos. 3–4, 381–395 (2001).CrossRef B. A. Gama, T. A. Bogetti, B. K. Fink, et al., “Aluminum foam integral armor: a new dimension of armor design,” Compos. Struct., 52, Nos. 3–4, 381–395 (2001).CrossRef
7.
Zurück zum Zitat H. Tan and S. Qu, “Impact of cellular materials,” in: H. Altenbach, A. Öchsner (Eds.), Cellular and Porous Materials in Structures and Processes, Vol. 521, Springer, Vienna (2010), pp. 309–334.CrossRef H. Tan and S. Qu, “Impact of cellular materials,” in: H. Altenbach, A. Öchsner (Eds.), Cellular and Porous Materials in Structures and Processes, Vol. 521, Springer, Vienna (2010), pp. 309–334.CrossRef
8.
Zurück zum Zitat J. Wang, A. M. Waas, and H. Wang, “Experimental and numerical study on the low-velocity impact behaviour of foam-core sandwich panels,” Compos. Struct., 96, 298–311 (2013).CrossRef J. Wang, A. M. Waas, and H. Wang, “Experimental and numerical study on the low-velocity impact behaviour of foam-core sandwich panels,” Compos. Struct., 96, 298–311 (2013).CrossRef
9.
Zurück zum Zitat L. Jing, Z. Wang, V. P. W. Shim, and L. Zhao, “An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading” Int. J. Impact Eng., 71, 60–72 (2014).CrossRef L. Jing, Z. Wang, V. P. W. Shim, and L. Zhao, “An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading” Int. J. Impact Eng., 71, 60–72 (2014).CrossRef
10.
Zurück zum Zitat V. Crupi, E. Kara, G. Epasto, et al., “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int. J. Impact Eng., 77, 97–107 (2015).CrossRef V. Crupi, E. Kara, G. Epasto, et al., “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int. J. Impact Eng., 77, 97–107 (2015).CrossRef
11.
Zurück zum Zitat P. Schaeffler, W. Rajner, D. Claar, et al., “Production, properties, and applications of Alulight® closed-cell aluminum foams,” in: Proc. of the Fifth Int. Workshop on Advanced Manufacturing Technologies (London, Canada 2005). P. Schaeffler, W. Rajner, D. Claar, et al., “Production, properties, and applications of Alulight® closed-cell aluminum foams,” in: Proc. of the Fifth Int. Workshop on Advanced Manufacturing Technologies (London, Canada 2005).
12.
Zurück zum Zitat V. Crupi, G. Epasto, and E. Guglielmino, “Internal damage investigation of composites subjected to low-velocity impact,” Exp. Tech., 40, No. 2, 555–568 (2016).CrossRef V. Crupi, G. Epasto, and E. Guglielmino, “Internal damage investigation of composites subjected to low-velocity impact,” Exp. Tech., 40, No. 2, 555–568 (2016).CrossRef
13.
Zurück zum Zitat V. S. Deshpande and N. A. Fleck, “High strain rate compressive behaviour of aluminium alloy foams,” Int. J. Impact Eng., 24, 277–298 (2000).CrossRef V. S. Deshpande and N. A. Fleck, “High strain rate compressive behaviour of aluminium alloy foams,” Int. J. Impact Eng., 24, 277–298 (2000).CrossRef
14.
Zurück zum Zitat A. Paul and U. Ramamurty, “Strain rate sensitivity of a closed-cell aluminum foam,” Mater. Sci. Eng. A, 281, Nos. 1–2, 1–7 (2000).CrossRef A. Paul and U. Ramamurty, “Strain rate sensitivity of a closed-cell aluminum foam,” Mater. Sci. Eng. A, 281, Nos. 1–2, 1–7 (2000).CrossRef
15.
Zurück zum Zitat T. Miyoshi, T. Mukai, and K. Higashi, “Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam,” Mater. Trans., 43, No. 7, 1778–1781 (2002).CrossRef T. Miyoshi, T. Mukai, and K. Higashi, “Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam,” Mater. Trans., 43, No. 7, 1778–1781 (2002).CrossRef
16.
Zurück zum Zitat S. Ramachandra, P. S. Kumar, and U. Ramamurty, “Impact energy absorption in an Al foam at low velocities,” Scripta Mater., 49, No. 8, 741–745 (2003).CrossRef S. Ramachandra, P. S. Kumar, and U. Ramamurty, “Impact energy absorption in an Al foam at low velocities,” Scripta Mater., 49, No. 8, 741–745 (2003).CrossRef
17.
Zurück zum Zitat J. U. Cho, S. J. Hong, S. K. Lee, and C. Cho, “Impact fracture behavior at the material of aluminum foam,” Mater. Sci. Eng. A, 539, 250–258 (2012).CrossRef J. U. Cho, S. J. Hong, S. K. Lee, and C. Cho, “Impact fracture behavior at the material of aluminum foam,” Mater. Sci. Eng. A, 539, 250–258 (2012).CrossRef
18.
Zurück zum Zitat A. Byakova, I. Kartuzov, S. Gnyloskurenko, and T. Nakamura, “The role of foaming agent and processing route in mechanical performance of fabricated aluminum foams,” Adv. Mater. Sci. Eng., 2014, 9 pages (2014), http://dx.doi.org/https://doi.org/10.1155/2014/607429.CrossRef A. Byakova, I. Kartuzov, S. Gnyloskurenko, and T. Nakamura, “The role of foaming agent and processing route in mechanical performance of fabricated aluminum foams,” Adv. Mater. Sci. Eng., 2014, 9 pages (2014), http://​dx.​doi.​org/​https://​doi.​org/​10.​1155/​2014/​607429.CrossRef
19.
Zurück zum Zitat N. Movahedi and S. M. H. Mirbagheri, “Comparison of the energy absorption of closed-cell aluminum foa produce by various foaming agents,” Strength Mater., 48, No. 3, 444–449 (2016).CrossRef N. Movahedi and S. M. H. Mirbagheri, “Comparison of the energy absorption of closed-cell aluminum foa produce by various foaming agents,” Strength Mater., 48, No. 3, 444–449 (2016).CrossRef
20.
Zurück zum Zitat A. V. Byakova, A. A. Vlasov, S. V. Gnyloskurenko, and I. Kartuzov, Method for Making the Blocks of Foamed Aluminum/Aluminum Alloys, UA Patent No. 104367 (2014). A. V. Byakova, A. A. Vlasov, S. V. Gnyloskurenko, and I. Kartuzov, Method for Making the Blocks of Foamed Aluminum/Aluminum Alloys, UA Patent No. 104367 (2014).
21.
Zurück zum Zitat T. Mukai, H. Kanahashi, T. Miyoshi, et al., “Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading,” Scripta Mater., 40, No. 8, 921–927 (1999).CrossRef T. Mukai, H. Kanahashi, T. Miyoshi, et al., “Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading,” Scripta Mater., 40, No. 8, 921–927 (1999).CrossRef
22.
Zurück zum Zitat Y. Liu, J. Yu, Z. Zheng, and J. Li, “A numerical study on the rate sensitivity of cellular metals,” Int. J. Solids Struct., 46, Nos. 22–23, 3988–3998 (2009).CrossRef Y. Liu, J. Yu, Z. Zheng, and J. Li, “A numerical study on the rate sensitivity of cellular metals,” Int. J. Solids Struct., 46, Nos. 22–23, 3988–3998 (2009).CrossRef
23.
Zurück zum Zitat P. Wang, S. Xu, Zh. Li, et al., “Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading,” Mater. Sci. Eng. A, 620, 253–261 (2014).CrossRef P. Wang, S. Xu, Zh. Li, et al., “Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading,” Mater. Sci. Eng. A, 620, 253–261 (2014).CrossRef
24.
Zurück zum Zitat P. Tan, S. Reid, J. Harrigan, et al., “Dynamic compressive strength properties of aluminium foams. Part I – experimental data and observations,” J. Mech. Phys. Solids, 53, No. 10, 2174–2205 (2005).CrossRef P. Tan, S. Reid, J. Harrigan, et al., “Dynamic compressive strength properties of aluminium foams. Part I – experimental data and observations,” J. Mech. Phys. Solids, 53, No. 10, 2174–2205 (2005).CrossRef
25.
Zurück zum Zitat L. L. Hu and Y. Liu, “Dynamic response of gradient foams,” Strength Mater., 46, No. 2, 296–300 (2014).CrossRef L. L. Hu and Y. Liu, “Dynamic response of gradient foams,” Strength Mater., 46, No. 2, 296–300 (2014).CrossRef
26.
Zurück zum Zitat G. V. Stepanov, Elastoplastic Deformation and Fracture of Materials under Pulse Loading [in Russian], Naukova Dumka, Kiev (1991). G. V. Stepanov, Elastoplastic Deformation and Fracture of Materials under Pulse Loading [in Russian], Naukova Dumka, Kiev (1991).
27.
Zurück zum Zitat B. Kriszt, B. Foroghi, and H. P. Degisher, “Behaviour of aluminium foam under uniaxial compression,” Mater. Sci. Tech., 16, 792–796 (2000).CrossRef B. Kriszt, B. Foroghi, and H. P. Degisher, “Behaviour of aluminium foam under uniaxial compression,” Mater. Sci. Tech., 16, 792–796 (2000).CrossRef
28.
Zurück zum Zitat K. A. Dannemann and J. Lankford, “High strain rate compression of closed-cell aluminium foams,” Mater. Sci. Eng. A, 293, Nos. 1–2, 157–164 (2000).CrossRef K. A. Dannemann and J. Lankford, “High strain rate compression of closed-cell aluminium foams,” Mater. Sci. Eng. A, 293, Nos. 1–2, 157–164 (2000).CrossRef
29.
Zurück zum Zitat F. Yi, Z. Zhu, F. Zu, et al., “Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams,” Mater. Charact., 46, No. 5, 417–422 (2001).CrossRef F. Yi, Z. Zhu, F. Zu, et al., “Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams,” Mater. Charact., 46, No. 5, 417–422 (2001).CrossRef
30.
Zurück zum Zitat I. W. Hall, M. Guden, and C.-J. Yu, “Crushing of aluminum closed cell foams: density and strain rate effects,” Scripta Mater., 43, 515–521 (2000).CrossRef I. W. Hall, M. Guden, and C.-J. Yu, “Crushing of aluminum closed cell foams: density and strain rate effects,” Scripta Mater., 43, 515–521 (2000).CrossRef
31.
Zurück zum Zitat C. S. Marchi, F. Cao, M. Kouzeli, and A. Mortensen, “Quasistatic and dynamic compression of aluminumoxide particle reinforced pure aluminum,” Mater. Sci. Eng. A, 337, Nos. 1–2, 202–211 (2002).CrossRef C. S. Marchi, F. Cao, M. Kouzeli, and A. Mortensen, “Quasistatic and dynamic compression of aluminumoxide particle reinforced pure aluminum,” Mater. Sci. Eng. A, 337, Nos. 1–2, 202–211 (2002).CrossRef
32.
Zurück zum Zitat T. Miyoshi, T. Mukai, and K. Hogashi, “Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam,” in: Proc. of the 4th Int. Conf. on Porous Metals and Metal Foaming Technology, The Japan Institute of Metals (Kyoto, Japan, 2005).CrossRef T. Miyoshi, T. Mukai, and K. Hogashi, “Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam,” in: Proc. of the 4th Int. Conf. on Porous Metals and Metal Foaming Technology, The Japan Institute of Metals (Kyoto, Japan, 2005).CrossRef
33.
Zurück zum Zitat T. Mukai, “Energy absorption of cellular aluminum alloys at high strain rates,” in: Proc. of the 4th Int. Conf. on Porous Metals and Metal Foaming Technology, The Japan Institute of Metals (Kyoto, Japan, 2005). T. Mukai, “Energy absorption of cellular aluminum alloys at high strain rates,” in: Proc. of the 4th Int. Conf. on Porous Metals and Metal Foaming Technology, The Japan Institute of Metals (Kyoto, Japan, 2005).
34.
Zurück zum Zitat J. Gibson, “Mechanical behavior of metallic foams,” Annu. Rev. Mater. Sci., 30, 191–227 (2000).CrossRef J. Gibson, “Mechanical behavior of metallic foams,” Annu. Rev. Mater. Sci., 30, 191–227 (2000).CrossRef
35.
Zurück zum Zitat J. W. Klintworth and W. J. Stronge, “Elasto-plastic yield limits and deformation laws for transverse by crushed honecombs,” Int. J. Mech. Sci., 30, Nos. 3–4, 273–292 (1988).CrossRef J. W. Klintworth and W. J. Stronge, “Elasto-plastic yield limits and deformation laws for transverse by crushed honecombs,” Int. J. Mech. Sci., 30, Nos. 3–4, 273–292 (1988).CrossRef
Metadaten
Titel
Characterization of Aluminum Foam Impact Response
verfasst von
O. V. Byakova
G. V. Stepanov
A. O. Vlasov
V. E. Danylyuk
N. V. Semenov
O. M. Berezovs’kyi
S. V. Gnyloskurenko
Publikationsdatum
03.12.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00121-5

Weitere Artikel der Ausgabe 5/2019

Strength of Materials 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.