Skip to main content
Top

2019 | OriginalPaper | Chapter

Should Anthropomorphic Systems be “Redundant”?

Authors : Ali Marjaninejad, Francisco J. Valero-Cuevas

Published in: Biomechanics of Anthropomorphic Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We explore the conceptual design and implementation of muscle redundancy and kinematic redundancy for anthropomorphic robots from three perspectives: (i) The control of tendon-driven systems, (ii) How the number of muscles define functional capabilities, and (iii) How too few synergies can be detrimental to functional versatility. Historically, roboticists prefer either rotational actuators located at each joint (i.e., rotational degree-of-freedom, DOF), or few linear actuators (i.e., two dedicated muscles per joint) for tendon-driven robots. In contrast, biological limbs have evolved to include too many muscles (Valero-Cuevas in Fundamentals of neuromechanics. Springer, Berlin (2015) [1]), which are thought to unnecessarily complicate their anatomy and control. The question, then, is why has evolution converged on these apparently under-determined (or redundant) solutions? If we really have extra muscles, then which muscle would you give up? By taking a formal mathematical approach to the control of tendons—which is the actual problem that confronts the nervous system—we have proposed a resolution to this apparent paradox by proposing that vertebrates may have, in fact, barely enough muscles to meet the numerous physical constraints for ecological functions (as opposed to simple laboratory tasks) (Valero-Cuevas in Fundamentals of neuromechanics. Springer, Berlin (2015) [1]; Loeb in Overcomplete musculature or underspecified tasks? Mot Control 4(1):81–83 (2000) [2]). This approach can be called Feasibility Theory, which describes how the anatomy of the system, and the constraints defining the task define the set of feasible actions the system can produce. The role of the (neural or engineered) controller is then, to find ways to use the mechanical capabilities of the combined controller-plant system to the fullest (Valero-Cuevas in Fundamentals of neuromechanics. Springer, Berlin (2015) [1]. Similarly, the effective mechanical design of a robotic limb, at a minimum, requires controllability (i.e., enough control degrees of freedom, or muscles) to produce arbitrary forces and movements (i.e., changes of state; Ogata in Modern control engineering. Prentice hall, India (2002) [3]). Force and movement capabilities have distinct governing equations and are, in fact, in competition with one another (e.g., a see-saw demonstrates, as per the Law of Conservation of Energy, how producing higher forces is associated with lower velocities and vice versa). Therefore, we explored the potential evolutionary pressures that may have shaped vertebrate limbs by evaluating how the number of muscles affects the competing demands to produce endpoint forces and velocities. A related concept that cuts across biological and robotic systems is the idea that the kinematics and kinetics of a wide variety of actions exhibit a low-dimensional structure that can be approximated with a few principal components (sometimes called descriptive synergies; Brock and Valero-Cuevas in Transferring synergies from neuroscience to robotics comment on hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by M. Santello et al. Phys Life Rev 17:27 (2016) [4]; Rieffel et al. in Automated discovery and optimization of large irregular tensegrity structures. Comput Struct 87(5):368–379 (2009) [5]). This has been taken to mean that a few degrees of freedom suffice to produce versatile behavior in the real world. However, the fine behavioral details that distinguish different actions are, by definition, not captured by the commonalities among them. Thus, versatility in the real world likely depends on recognizing and executing fine distinctions among actions; which implies that more degrees of freedom of control are critical for true functional versatility. These three independent arguments support the perspective that creating anthropomorphic systems requires apparently redundant structures, because only then can they truly execute a wide variety of real-world tasks. In addition, we also present an open-access MATLAB toolbox that allows users from different backgrounds to explore these concepts in detail. We believe this new perspective will improve the conceptualization, understanding, and design of anthropomorphic systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Valero-Cuevas, F.J.: Fundamentals of Neuromechanics. Springer, Berlin (2015) Valero-Cuevas, F.J.: Fundamentals of Neuromechanics. Springer, Berlin (2015)
2.
go back to reference Loeb, G.E.: Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)CrossRef Loeb, G.E.: Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)CrossRef
3.
go back to reference Ogata, K., Yang, Y.: Modern Control Engineering, vol. 4. Prentice hall, India (2002) Ogata, K., Yang, Y.: Modern Control Engineering, vol. 4. Prentice hall, India (2002)
4.
go back to reference Brock, O., Valero-Cuevas, F.: Transferring synergies from neuroscience to robotics comment on hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by M. Santello et al. Phys. Life Rev. 17, 27 (2016)CrossRef Brock, O., Valero-Cuevas, F.: Transferring synergies from neuroscience to robotics comment on hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by M. Santello et al. Phys. Life Rev. 17, 27 (2016)CrossRef
5.
go back to reference Rieffel, J., Valero-Cuevas, F., Lipson, H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87(5), 368–379 (2009)CrossRef Rieffel, J., Valero-Cuevas, F., Lipson, H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87(5), 368–379 (2009)CrossRef
6.
go back to reference Hagen, D.A., Valero-Cuevas, F.J.: Similar movements are associated with drastically different muscle contraction velocities. J. Biomech. 59, 90 (2017)CrossRef Hagen, D.A., Valero-Cuevas, F.J.: Similar movements are associated with drastically different muscle contraction velocities. J. Biomech. 59, 90 (2017)CrossRef
7.
go back to reference Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRef Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRef
8.
go back to reference Lee, Y.-T., Choi, H.-R., Chung, W.-K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. 14(5), 10–19 (1994)CrossRef Lee, Y.-T., Choi, H.-R., Chung, W.-K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. 14(5), 10–19 (1994)CrossRef
9.
go back to reference Kobayashi, H., Hyodo, K., Ogane, D.: On tendon-driven robotic mechanisms with redundant tendons. Int. J. Robot. Res. 17(5), 561–571 (1998)CrossRef Kobayashi, H., Hyodo, K., Ogane, D.: On tendon-driven robotic mechanisms with redundant tendons. Int. J. Robot. Res. 17(5), 561–571 (1998)CrossRef
10.
go back to reference Fu, J.L., Pollard, N.S. : On the importance of asymmetries in grasp quality metrics for tendon driven hands. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1068–1075. IEEE, New York (2006) Fu, J.L., Pollard, N.S. : On the importance of asymmetries in grasp quality metrics for tendon driven hands. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1068–1075. IEEE, New York (2006)
11.
go back to reference Inouye, J.M., Kutch, J.J., Valero-Cuevas, F.J.: A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands. IEEE Trans. Rob. 28(4), 958–966 (2012)CrossRef Inouye, J.M., Kutch, J.J., Valero-Cuevas, F.J.: A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands. IEEE Trans. Rob. 28(4), 958–966 (2012)CrossRef
12.
go back to reference Inouye, J.M., Valero-Cuevas, F.J.: Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. 33(5), 694–705 (2014)CrossRef Inouye, J.M., Valero-Cuevas, F.J.: Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. 33(5), 694–705 (2014)CrossRef
13.
go back to reference Mardula, K.L., Balasubramanian, R., Allan, C.H.: Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand 10(1), 116–122 (2015)CrossRef Mardula, K.L., Balasubramanian, R., Allan, C.H.: Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand 10(1), 116–122 (2015)CrossRef
14.
go back to reference Valero-Cuevas, F.J., Cohn, B., Yngvason, H., Lawrence, E.L.: Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J. Biomech. 48(11), 2887–2896 (2015)CrossRef Valero-Cuevas, F.J., Cohn, B., Yngvason, H., Lawrence, E.L.: Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J. Biomech. 48(11), 2887–2896 (2015)CrossRef
15.
go back to reference Proske, U., Morgan, D.: Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537(2), 333–345 (2001)CrossRef Proske, U., Morgan, D.: Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537(2), 333–345 (2001)CrossRef
16.
go back to reference Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004737 (2016)CrossRef Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004737 (2016)CrossRef
17.
go back to reference Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)CrossRef Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)CrossRef
18.
go back to reference Chao, E., An, K.-N.: Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100(3), 159–167 (1978)CrossRef Chao, E., An, K.-N.: Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100(3), 159–167 (1978)CrossRef
19.
go back to reference Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT press, Cambridge, MA (1990) Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT press, Cambridge, MA (1990)
20.
go back to reference Leijnse, J.: A generic morphological model of the anatomic variability in the m. flexor digitorum profundus, m. flexor pollicis longus and mm. lumbricales complex. Cells Tissues Organs 160(1), 62–74 (1997)CrossRef Leijnse, J.: A generic morphological model of the anatomic variability in the m. flexor digitorum profundus, m. flexor pollicis longus and mm. lumbricales complex. Cells Tissues Organs 160(1), 62–74 (1997)CrossRef
21.
go back to reference Zajac, F.E.: Muscle and tendon properties models scaling and application to biomechanics and motor. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989) Zajac, F.E.: Muscle and tendon properties models scaling and application to biomechanics and motor. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)
22.
go back to reference Chvatal, V.: Linear Programming. Macmillan, New York (1983)MATH Chvatal, V.: Linear Programming. Macmillan, New York (1983)MATH
23.
go back to reference Prilutsky, B.I.: Muscle coordination: the discussion continues. Mot. Control 4(1), 97–116 (2000)CrossRef Prilutsky, B.I.: Muscle coordination: the discussion continues. Mot. Control 4(1), 97–116 (2000)CrossRef
24.
go back to reference Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)CrossRef Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)CrossRef
25.
go back to reference Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRef Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRef
26.
go back to reference Napier, J.R.: The prehensile movements of the human hand. Bone Joint J. 38(4), 902–913 (1956) Napier, J.R.: The prehensile movements of the human hand. Bone Joint J. 38(4), 902–913 (1956)
27.
go back to reference Johansson, R.S., Cole, K.J.: Sensory-motor coordination during grasping and manipulative actions. Curr. Opin. Neurobiol. 2(6), 815–823 (1992)CrossRef Johansson, R.S., Cole, K.J.: Sensory-motor coordination during grasping and manipulative actions. Curr. Opin. Neurobiol. 2(6), 815–823 (1992)CrossRef
28.
go back to reference Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE, New York (2012) Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE, New York (2012)
29.
go back to reference Sherrington, C.S.: Reflex inhibition as a factor in the co-ordination of movements and postures. Exp. Physiol. 6(3), 251–310 (1913)CrossRef Sherrington, C.S.: Reflex inhibition as a factor in the co-ordination of movements and postures. Exp. Physiol. 6(3), 251–310 (1913)CrossRef
31.
go back to reference Laine, C.M., Nagamori, A., Valero-Cuevas, F.J.: The dynamics of voluntary force production in afferented muscle influence involuntary tremor. Front. Comput. Neurosci. 10, 86 (2016)CrossRef Laine, C.M., Nagamori, A., Valero-Cuevas, F.J.: The dynamics of voluntary force production in afferented muscle influence involuntary tremor. Front. Comput. Neurosci. 10, 86 (2016)CrossRef
32.
go back to reference Jalaleddini, K., Nagamori, A., Laine, C.M., Golkar, M.A., Kearney, R.E., Valero-Cuevas, F.J.: Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control. J. Physiol. 595, 7331 (2017)CrossRef Jalaleddini, K., Nagamori, A., Laine, C.M., Golkar, M.A., Kearney, R.E., Valero-Cuevas, F.J.: Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control. J. Physiol. 595, 7331 (2017)CrossRef
33.
go back to reference Nagamori, A., Laine, C.M., Valero-Cuevas, F.J.: Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS Comp Biol (2017, in press) Nagamori, A., Laine, C.M., Valero-Cuevas, F.J.: Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS Comp Biol (2017, in press)
34.
go back to reference Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., et al.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)CrossRef Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., et al.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)CrossRef
35.
go back to reference Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)CrossRef Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)CrossRef
36.
go back to reference Valero-Cuevas, F.J., Santello, M.: On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 14(1), 101 (2017)CrossRef Valero-Cuevas, F.J., Santello, M.: On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 14(1), 101 (2017)CrossRef
37.
go back to reference Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Human-Mach. Syst. 46(1), 66–77 (2016)CrossRef Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Human-Mach. Syst. 46(1), 66–77 (2016)CrossRef
38.
go back to reference Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)CrossRef Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)CrossRef
39.
go back to reference Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)CrossRef Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)CrossRef
Metadata
Title
Should Anthropomorphic Systems be “Redundant”?
Authors
Ali Marjaninejad
Francisco J. Valero-Cuevas
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-93870-7_2