Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Signal Processing Methods for Light Field Displays

Authors : Robert Bregovic, Erdem Sahin, Suren Vagharshakyan, Atanas Gotchev

Published in: Handbook of Signal Processing Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses the topic of emerging light field displays from a signal processing perspective. Light field displays are defined as devices which deliver continuous parallax along with the focus and binocular visual cues acting together in rivalry-free manner. In order to ensure such functionality, one has to deal with the light field, conceptualized by the plenoptic function and its adequate parametrization, sampling and reconstruction. The light field basics and the corresponding display technologies are overviewed in order to address the fundamental problems of analyzing light field displays as signal processing channels, and of capturing and representing light field visual content for driving such displays. Spectral analysis of multidimensional sampling operators is utilized to profile the displays in question, and modern sparsification approaches are employed to develop methods for high-quality light field reconstruction and rendering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51-151, 1939.CrossRef A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51-151, 1939.CrossRef
2.
go back to reference E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing. MIT Press, pp. 3-20, 1991. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing. MIT Press, pp. 3-20, 1991.
3.
go back to reference M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. ACM SIGGRAPH, 1996, pp. 31-42. M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. ACM SIGGRAPH, 1996, pp. 31-42.
4.
go back to reference S.J.Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph”, in Proc. ACM SIGGRAPH, 1996, pp. 43-54. S.J.Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph”, in Proc. ACM SIGGRAPH, 1996, pp. 43-54.
5.
go back to reference P. Moon and D.E. Spencer, The Photic Field. MIT Press, 1981. P. Moon and D.E. Spencer, The Photic Field. MIT Press, 1981.
6.
go back to reference R. Bregović, P. T. Kovács, T. Balogh, and A. Gotchev, “Display-specific light-field analysis,” in Proc. SPIE 9117, 911710, 2014. R. Bregović, P. T. Kovács, T. Balogh, and A. Gotchev, “Display-specific light-field analysis,” in Proc. SPIE 9117, 911710, 2014.
7.
go back to reference C. K. Liang, Y. C. Shih, and H. H. Chen, “Light field analysis for modeling image formation,” IEEE Trans. Image Process. Vol. 20, no. 2, 446–460, 2011.MathSciNetCrossRef C. K. Liang, Y. C. Shih, and H. H. Chen, “Light field analysis for modeling image formation,” IEEE Trans. Image Process. Vol. 20, no. 2, 446–460, 2011.MathSciNetCrossRef
8.
go back to reference R. Bregović, P. T. Kovács, and A. Gotchev, “Optimization of light field display-camera configuration based on display properties in spectral domain,” Optics Express, vol. 24, no. 3, pp. 3067-3088, Feb. 2016.CrossRef R. Bregović, P. T. Kovács, and A. Gotchev, “Optimization of light field display-camera configuration based on display properties in spectral domain,” Optics Express, vol. 24, no. 3, pp. 3067-3088, Feb. 2016.CrossRef
9.
go back to reference R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image analysis: An approach to determine structure from motion,” Int. J. Comput. Vis., vol. 1, no. 1, pp. 7-55, 1987.CrossRef R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image analysis: An approach to determine structure from motion,” Int. J. Comput. Vis., vol. 1, no. 1, pp. 7-55, 1987.CrossRef
10.
go back to reference J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proc. ACM SIGGRAPH 2000, pp. 307-318. J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proc. ACM SIGGRAPH 2000, pp. 307-318.
11.
go back to reference C. Zhang and T. Chen, “Spectral analysis for sampling image-based rendering data,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp 1038-1050, Nov. 2003. C. Zhang and T. Chen, “Spectral analysis for sampling image-based rendering data,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp 1038-1050, Nov. 2003.
12.
go back to reference J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic layer-based modeling for image based rendering,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3405–3419, Sep. 2013. J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic layer-based modeling for image based rendering,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3405–3419, Sep. 2013.
13.
go back to reference C. Gilliam, P.L. Dragotti, and M. Brookes, “On the spectrum of the plenoptic function,” IEEE Trans. Image Proc., vol. 23, no. 2, pp. 502-516, Feb. 2014.MathSciNetCrossRef C. Gilliam, P.L. Dragotti, and M. Brookes, “On the spectrum of the plenoptic function,” IEEE Trans. Image Proc., vol. 23, no. 2, pp. 502-516, Feb. 2014.MathSciNetCrossRef
14.
go back to reference D. R. Proffitt and C. Caudek, “Depth perception and the perception of events,” in Handbook of Psychology. New York, NY, 2002. D. R. Proffitt and C. Caudek, “Depth perception and the perception of events,” in Handbook of Psychology. New York, NY, 2002.
15.
go back to reference A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable Light Fields: Matching the Requirements Between the Human Visual System and Autostereoscopic 3-D Displays,” Proc IEEE vol. 102, no. 10, pp. 1571-1587, 2014.CrossRef A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable Light Fields: Matching the Requirements Between the Human Visual System and Autostereoscopic 3-D Displays,” Proc IEEE vol. 102, no. 10, pp. 1571-1587, 2014.CrossRef
16.
go back to reference L. Goldmann and T. Ebrahimi, “Towards reliable and reproducible 3-D video quality assessment,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 8043, 2011. L. Goldmann and T. Ebrahimi, “Towards reliable and reproducible 3-D video quality assessment,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 8043, 2011.
17.
go back to reference A. Boev, R. Bregović, and A. Gotchev, “Signal processing for stereoscopic and multi-view 3D displays,” in Handbook of Signal Processing Systems, 2nd edition, S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, eds., Springer, 2013. A. Boev, R. Bregović, and A. Gotchev, “Signal processing for stereoscopic and multi-view 3D displays,” in Handbook of Signal Processing Systems, 2nd edition, S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, eds., Springer, 2013.
18.
go back to reference M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, “3D Displays,” Annual Review of Vision Science, vol. 2, pp. 397-435, 2016.CrossRef M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, “3D Displays,” Annual Review of Vision Science, vol. 2, pp. 397-435, 2016.CrossRef
19.
go back to reference D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” Journal of Vision, vol. 8, no. 33, 2008.CrossRef D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” Journal of Vision, vol. 8, no. 33, 2008.CrossRef
20.
go back to reference F. L. Kooi and M, Lucassen, “Visual comfort of binocular and 3D displays,” in Proc. SPIE 4299, Human Vision and Electronic Imaging VI, 586, 2001. F. L. Kooi and M, Lucassen, “Visual comfort of binocular and 3D displays,” in Proc. SPIE 4299, Human Vision and Electronic Imaging VI, 586, 2001.
21.
go back to reference P. A. Howarth, “Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review,” Ophthalmic and Physiological Optics, vol. 31, pp 111–122, 2011.CrossRef P. A. Howarth, “Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review,” Ophthalmic and Physiological Optics, vol. 31, pp 111–122, 2011.CrossRef
22.
go back to reference M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A, vol. 33, no. 12, 2348-2364, 2016.CrossRef M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A, vol. 33, no. 12, 2348-2364, 2016.CrossRef
23.
go back to reference Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” in Proc. of Third International Display Workshops (IDW), 1996. Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” in Proc. of Third International Display Workshops (IDW), 1996.
24.
go back to reference H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” in Proc. SPIE 9011, 90111H, 2014. H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” in Proc. SPIE 9011, 90111H, 2014.
25.
go back to reference Y. Kim, et al., “Accommodative response of integral imaging in near distance,” J. Disp. Technol. Vol. 8, no. 2, pp. 70–78, 2012.CrossRef Y. Kim, et al., “Accommodative response of integral imaging in near distance,” J. Disp. Technol. Vol. 8, no. 2, pp. 70–78, 2012.CrossRef
26.
go back to reference Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express vol. 19, no. 2, pp. 704–716, 2011.CrossRef Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express vol. 19, no. 2, pp. 704–716, 2011.CrossRef
27.
go back to reference G. Lippmann, “Epreuves reversibles Photographies integrals,” Comptes Rendus Academie des Sciences, vol. 146, pp. 446–451, 1908. G. Lippmann, “Epreuves reversibles Photographies integrals,” Comptes Rendus Academie des Sciences, vol. 146, pp. 446–451, 1908.
28.
go back to reference J.-H. Jung, K. Hong and B. Lee, “Effect of viewing region satisfying super multi-view Condition in Integral Imaging,” SID Symposium Digest of Technical Papers, vol. 43, pp. 883–886, 2012.CrossRef J.-H. Jung, K. Hong and B. Lee, “Effect of viewing region satisfying super multi-view Condition in Integral Imaging,” SID Symposium Digest of Technical Papers, vol. 43, pp. 883–886, 2012.CrossRef
29.
go back to reference H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID, vol. 22, no. 3, pp. 158–162, 2014.CrossRef H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID, vol. 22, no. 3, pp. 158–162, 2014.CrossRef
30.
go back to reference H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express, vol. 18, no. 25, pp. 25573–25583, 2010.CrossRef H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express, vol. 18, no. 25, pp. 25573–25583, 2010.CrossRef
31.
go back to reference F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. vol. 36, pp. 1598–1603, 1997.CrossRef F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. vol. 36, pp. 1598–1603, 1997.CrossRef
32.
go back to reference X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. vol. 52, no. 4, pp. 546-560, 2013.CrossRef X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. vol. 52, no. 4, pp. 546-560, 2013.CrossRef
33.
go back to reference J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. Vol. 28, no. 16, pp. 1421–1423, 2003.CrossRef J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. Vol. 28, no. 16, pp. 1421–1423, 2003.CrossRef
34.
go back to reference S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. vol. 42, no. 20, pp. 4186–4195, 2003.CrossRef S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. vol. 42, no. 20, pp. 4186–4195, 2003.CrossRef
35.
go back to reference S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications” J. Inf. Disp., vol. 15, no. 1, pp. 37–46, 2014.CrossRef S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications” J. Inf. Disp., vol. 15, no. 1, pp. 37–46, 2014.CrossRef
36.
go back to reference C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design”, in Proc. SPIE, 3012, pp.179-186, 1997. C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design”, in Proc. SPIE, 3012, pp.179-186, 1997.
37.
go back to reference Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display”, Opt. Express, vol. 19, no. 5, pp. 4129–4139, 2011.CrossRef Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display”, Opt. Express, vol. 19, no. 5, pp. 4129–4139, 2011.CrossRef
38.
go back to reference B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, Display. New York, NY, USA: Springer-Verlag, 2009. B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, Display. New York, NY, USA: Springer-Verlag, 2009.
39.
go back to reference J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon., vol. 5, no. 4, pp. 456–535, 2013.CrossRef J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon., vol. 5, no. 4, pp. 456–535, 2013.CrossRef
40.
go back to reference T. Honda, Y. Kajiki, S. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3-D images,” in Three-Dimensional Television, Video and Display Technologies. Berlin, Germany: Springer-Verlag, pp. 461–487, 2002. T. Honda, Y. Kajiki, S. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3-D images,” in Three-Dimensional Television, Video and Display Technologies. Berlin, Germany: Springer-Verlag, pp. 461–487, 2002.
41.
go back to reference Y. Takaki, Y. Urano, and H. Nishio, “Motion-parallax smoothness of short-, medium-, and long-distance 3D image presentation using multi-view displays,” Opt. Express, vol. 20, no. 24, pp. 27180-27197, 2012.CrossRef Y. Takaki, Y. Urano, and H. Nishio, “Motion-parallax smoothness of short-, medium-, and long-distance 3D image presentation using multi-view displays,” Opt. Express, vol. 20, no. 24, pp. 27180-27197, 2012.CrossRef
42.
go back to reference Y. Takaki, “Development of super multi-view displays,” ITE Transactions on Media Technology and Applications, vol. 2, no. 1, pp. 8–14, 2014.CrossRef Y. Takaki, “Development of super multi-view displays,” ITE Transactions on Media Technology and Applications, vol. 2, no. 1, pp. 8–14, 2014.CrossRef
43.
go back to reference Y. Kajiki, H. Yoshikawa and T. Honda: “Hologram-like video images by 45-view stereoscopic display”, in Proc. SPIE, 3012, pp.154-166, 1997. Y. Kajiki, H. Yoshikawa and T. Honda: “Hologram-like video images by 45-view stereoscopic display”, in Proc. SPIE, 3012, pp.154-166, 1997.
44.
go back to reference T. Honda, D. Nagai and M. Shimomatsu: “Development of 3-D display system by a fan-like array of projection optics”, in Proc. SPIE, 4660, pp.191-199, 2001. T. Honda, D. Nagai and M. Shimomatsu: “Development of 3-D display system by a fan-like array of projection optics”, in Proc. SPIE, 4660, pp.191-199, 2001.
45.
go back to reference H. Nakanuma, H. Kamei, and Y. Takaki: “Natural 3D display with 128 directional images used for human-engineering evaluation”, in Proc. SPIE, 5664, pp.28-35, 2005. H. Nakanuma, H. Kamei, and Y. Takaki: “Natural 3D display with 128 directional images used for human-engineering evaluation”, in Proc. SPIE, 5664, pp.28-35, 2005.
46.
go back to reference K. Kikuta and Y. Takaki: “Development of SVGA resolution 128-directional display”, in Proc. SPIE, 6490, pp.64900U-1-8, 2007. K. Kikuta and Y. Takaki: “Development of SVGA resolution 128-directional display”, in Proc. SPIE, 6490, pp.64900U-1-8, 2007.
47.
go back to reference T. Kanebako and Y. Takaki: “Time-multiplexing display module for high-density directional display”, in Proc. SPIE, 6803, pp.68030P-1-8, 2008. T. Kanebako and Y. Takaki: “Time-multiplexing display module for high-density directional display”, in Proc. SPIE, 6803, pp.68030P-1-8, 2008.
48.
go back to reference Y. Takaki and N. Nago: “Multi-projection of lenticular displays to construct a 256-view super multi-view display”, Opt. Express, vol. 18, no. 8, pp.8824-8835, 2010.CrossRef Y. Takaki and N. Nago: “Multi-projection of lenticular displays to construct a 256-view super multi-view display”, Opt. Express, vol. 18, no. 8, pp.8824-8835, 2010.CrossRef
49.
go back to reference T. Balogh, “The HoloVizio system,” in Proc. SPIE 6055, 12 pages, 2006. T. Balogh, “The HoloVizio system,” in Proc. SPIE 6055, 12 pages, 2006.
50.
go back to reference J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Applied Physics Letters, vol. 12, no. 1, pp. 10-12, 1968.CrossRef J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Applied Physics Letters, vol. 12, no. 1, pp. 10-12, 1968.CrossRef
51.
go back to reference D. J. DeBitetto, “Holographic Panoramic Stereograms Synthesized from White Light Recordings,” Applied Optics, vol. 8, no. 8, pp. 1740-1741, 1969.CrossRef D. J. DeBitetto, “Holographic Panoramic Stereograms Synthesized from White Light Recordings,” Applied Optics, vol. 8, no. 8, pp. 1740-1741, 1969.CrossRef
52.
go back to reference M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Proc. SPIE, vol. 2176, pp. 73-84, 1994. M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Proc. SPIE, vol. 2176, pp. 73-84, 1994.
53.
go back to reference F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Applied Optics, vol. 48, no. 34, pp. H48-H53, 2009.CrossRef F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Applied Optics, vol. 48, no. 34, pp. H48-H53, 2009.CrossRef
54.
go back to reference D. Brotherton-Ratcliffe, F. Vergnes, A. Rodin, and M. Grichine Holographic Printer. U.S. Patent 1999b; No. US7800803B2. D. Brotherton-Ratcliffe, F. Vergnes, A. Rodin, and M. Grichine Holographic Printer. U.S. Patent 1999b; No. US7800803B2.
56.
go back to reference X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dyedoped liquid crystal,” J. Display Technol., vol. 10, pp. 438–443, 2014.CrossRef X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dyedoped liquid crystal,” J. Display Technol., vol. 10, pp. 438–443, 2014.CrossRef
57.
go back to reference S. Tay, M. Yamamoto, and N. Peyghambarian, “An updateable holographic 3-D display based on photorefractive polymers,” SID Symp. Dig. Tech. Pap. 39, pp. 356–357, 2008. S. Tay, M. Yamamoto, and N. Peyghambarian, “An updateable holographic 3-D display based on photorefractive polymers,” SID Symp. Dig. Tech. Pap. 39, pp. 356–357, 2008.
58.
go back to reference M. Lucente, Diffraction-specific fringe computation for electro-holography, Ph.D. dissertation, Cambridge, MA, USA, 1994. M. Lucente, Diffraction-specific fringe computation for electro-holography, Ph.D. dissertation, Cambridge, MA, USA, 1994.
59.
go back to reference T. Yatagai, “Three-dimensional displays using computer-generated holograms,” Optics Communications, vol. 12, no. 1, pp. 43-45, 1974.CrossRef T. Yatagai, “Three-dimensional displays using computer-generated holograms,” Optics Communications, vol. 12, no. 1, pp. 43-45, 1974.CrossRef
60.
go back to reference J. Mäkinen, From light fields to wavefields: Hologram generation from multiperspective images, Master’s thesis, Tampere University of Technology, Finland, 2017. J. Mäkinen, From light fields to wavefields: Hologram generation from multiperspective images, Master’s thesis, Tampere University of Technology, Finland, 2017.
61.
go back to reference B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. Hoboken, N.J: John Wiley & Sons, 2007. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. Hoboken, N.J: John Wiley & Sons, 2007.
62.
go back to reference Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” in Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903, 2010. Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” in Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903, 2010.
63.
go back to reference H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express vol. 23, no. 4, 3901-3913, 2015.CrossRef H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express vol. 23, no. 4, 3901-3913, 2015.CrossRef
64.
go back to reference Ives FE. 1903. Parallax stereogram and process of making same. US Patent No. 725,567. Ives FE. 1903. Parallax stereogram and process of making same. US Patent No. 725,567.
65.
go back to reference D. Lanman, M. Hirsch, Y. Kim Y, R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. vol. 29, no. 6, 163: 10 pages, 2010.CrossRef D. Lanman, M. Hirsch, Y. Kim Y, R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. vol. 29, no. 6, 163: 10 pages, 2010.CrossRef
66.
go back to reference G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, “Tensor displays: compressive fight field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. vol. 31, 80: 11 pages, 2012.CrossRef G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, “Tensor displays: compressive fight field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. vol. 31, 80: 11 pages, 2012.CrossRef
67.
go back to reference G. Wetzstein, D. Lanman, W. Heidrich, R. Raskar, ”Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. vol. 30, 95: 11 pages, 2011.CrossRef G. Wetzstein, D. Lanman, W. Heidrich, R. Raskar, ”Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. vol. 30, 95: 11 pages, 2011.CrossRef
68.
go back to reference F-C. Huang, K. Chen, G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph., vol. 34, 60: 12 pages, 2015. F-C. Huang, K. Chen, G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph., vol. 34, 60: 12 pages, 2015.
69.
go back to reference M. Hirsch, G. Wetzstein, R. Raskar, ”A Compressive Light Field Projection System,” ACM Trans. Graph., vol. 33, 4: 12 pages, 2014.CrossRef M. Hirsch, G. Wetzstein, R. Raskar, ”A Compressive Light Field Projection System,” ACM Trans. Graph., vol. 33, 4: 12 pages, 2014.CrossRef
70.
go back to reference J.H. Lee, J. Park, D. Nam, S.Y. Choi, D.S. Park, and C.Y. Kim, “Optimal projector configuration design for 300-Mpixels multi-projection 3D display,” Opt. Express vol. 21, no. 22, 26820–26835, 2013.CrossRef J.H. Lee, J. Park, D. Nam, S.Y. Choi, D.S. Park, and C.Y. Kim, “Optimal projector configuration design for 300-Mpixels multi-projection 3D display,” Opt. Express vol. 21, no. 22, 26820–26835, 2013.CrossRef
71.
go back to reference E. Dubois, “The sampling and reconstruction of time-varying imagery with application in video systems,” in Proc. IEEE 73, 502–522, 1985.CrossRef E. Dubois, “The sampling and reconstruction of time-varying imagery with application in video systems,” in Proc. IEEE 73, 502–522, 1985.CrossRef
72.
go back to reference E. Dubois, “Video sampling and interpolation,” in The Essential Guide to Video Processing, J. Bovik, ed., Academic Press, 2009. E. Dubois, “Video sampling and interpolation,” in The Essential Guide to Video Processing, J. Bovik, ed., Academic Press, 2009.
73.
go back to reference P.Q. Nguyen and D. Stehlé, “Low-dimensional lattice basis reduction revisited,” ACM Trans. Algorithms, vol. 5, no. 4, 46 pages, 2009.MathSciNetCrossRef P.Q. Nguyen and D. Stehlé, “Low-dimensional lattice basis reduction revisited,” ACM Trans. Algorithms, vol. 5, no. 4, 46 pages, 2009.MathSciNetCrossRef
74.
go back to reference F. Aurenhammer, “Voronoi diagrams – A survey of a fundamental geometric data structure,” ACM Computing Surveys vol. 23, pp. 245-405, 1991.CrossRef F. Aurenhammer, “Voronoi diagrams – A survey of a fundamental geometric data structure,” ACM Computing Surveys vol. 23, pp. 245-405, 1991.CrossRef
75.
go back to reference E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University, 2011. E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University, 2011.
76.
go back to reference P. T. Kovács, K. Lackner, A. Barsi, A. Balázs, A. Boev, R. Bregović, and A. Gotchev, “Measurement of perceived spatial resolution in 3D light-field displays,” in Proc. IEEE Int. Conf. Image Processing, Paris, France, pp. 768–772, Oct. 2014. P. T. Kovács, K. Lackner, A. Barsi, A. Balázs, A. Boev, R. Bregović, and A. Gotchev, “Measurement of perceived spatial resolution in 3D light-field displays,” in Proc. IEEE Int. Conf. Image Processing, Paris, France, pp. 768–772, Oct. 2014.
77.
go back to reference P. T. Kovács, R. Bregović, A. Boev, A. Barsi, and A. Gotchev, “Quantifying spatial and angular resolution of 3D light-field displays,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1213-1222, Oct. 2017.CrossRef P. T. Kovács, R. Bregović, A. Boev, A. Barsi, and A. Gotchev, “Quantifying spatial and angular resolution of 3D light-field displays,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1213-1222, Oct. 2017.CrossRef
78.
go back to reference Z. Lin and H.-Y. Shum, “A geometric analysis of light field rendering,” Int’l J. of Computer Vision, vol. 58, no. 2, pp. 121–138, 2004.CrossRef Z. Lin and H.-Y. Shum, “A geometric analysis of light field rendering,” Int’l J. of Computer Vision, vol. 58, no. 2, pp. 121–138, 2004.CrossRef
79.
go back to reference R. Ng, “Fourier Slice Photography,” in Proc. ACM SIGGRAPH, pp. 735–744, July 2005. R. Ng, “Fourier Slice Photography,” in Proc. ACM SIGGRAPH, pp. 735–744, July 2005.
80.
go back to reference I. Tosic and K. Berkner, “Light Field Scale-Depth Space Transform for Dense Depth Estimation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 441–448, June 2014. I. Tosic and K. Berkner, “Light Field Scale-Depth Space Transform for Dense Depth Estimation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 441–448, June 2014.
81.
go back to reference K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung, “Efficient 3D Object Segmentation from Densely Sampled Light Fields with Applications to 3D Reconstruction,” ACM Trans. on Graphics, vol. 35, no. 3, 2016.CrossRef K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung, “Efficient 3D Object Segmentation from Densely Sampled Light Fields with Applications to 3D Reconstruction,” ACM Trans. on Graphics, vol. 35, no. 3, 2016.CrossRef
82.
go back to reference M. Tanimoto, “Overview of FTV (free-viewpoint television),” in Proc. IEEE Conf. Multimedia and Expo (ICME 2009), pp. 1552–1553, June 2009. M. Tanimoto, “Overview of FTV (free-viewpoint television),” in Proc. IEEE Conf. Multimedia and Expo (ICME 2009), pp. 1552–1553, June 2009.
83.
go back to reference J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-Corrected Light Field Rendering for Creating a Holographic Stereogram,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–13, 2012. J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-Corrected Light Field Rendering for Creating a Holographic Stereogram,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–13, 2012.
84.
go back to reference H. Shum, S. Chan, and S. Kang, Image-Based Rendering. Springer- Verlag, 2007. H. Shum, S. Chan, and S. Kang, Image-Based Rendering. Springer- Verlag, 2007.
85.
go back to reference S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Light Field Reconstruction Using Shearlet Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no.1, pp. 133-147, Jan. 2018. S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Light Field Reconstruction Using Shearlet Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no.1, pp. 133-147, Jan. 2018.
86.
go back to reference C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured lumigraph rendering,” in Proc. 28th Conf. on Computer Graphics and Interactive Techniques, pp. 425-432, 2001. C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured lumigraph rendering,” in Proc. 28th Conf. on Computer Graphics and Interactive Techniques, pp. 425-432, 2001.
87.
go back to reference S. Fuhrmann, F. Langguth and M. Goesele “MVE – A Multi-View Reconstruction Environment,” in Proc EUROGRAPHICS Workshops on Graphics and Cultural Heritage, 2014. S. Fuhrmann, F. Langguth and M. Goesele “MVE – A Multi-View Reconstruction Environment,” in Proc EUROGRAPHICS Workshops on Graphics and Cultural Heritage, 2014.
88.
go back to reference S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski “A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in Proc. Conference on Computer Vision and Pattern Recognition (CVPR), 2006. S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski “A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in Proc. Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
89.
go back to reference H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Information,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, Feb. 2008. H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Information,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, Feb. 2008.
90.
go back to reference S. N. Sinha, D. Scharstein and R. Szeliski, “Efficient High- Resolution Stereo Matching Using Local Plane Sweeps,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1582–1589, June 2014. S. N. Sinha, D. Scharstein and R. Szeliski, “Efficient High- Resolution Stereo Matching Using Local Plane Sweeps,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1582–1589, June 2014.
91.
go back to reference G. Zhang, J. Jia, T. Wong, and H. Bao, “Consistent Depth Maps Recovery from a Video Sequence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 974–988, June 2009. G. Zhang, J. Jia, T. Wong, and H. Bao, “Consistent Depth Maps Recovery from a Video Sequence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 974–988, June 2009.
92.
go back to reference C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proc. Stereoscopic Displays Appl, pp. 93-104, 2002. C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proc. Stereoscopic Displays Appl, pp. 93-104, 2002.
93.
go back to reference J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic Layer- Based Modeling for Image Based Rendering,” IEEE Trans. Image Processing, vol. 22, no. 9, pp. 3405–3419, Sept. 2013. J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic Layer- Based Modeling for Image Based Rendering,” IEEE Trans. Image Processing, vol. 22, no. 9, pp. 3405–3419, Sept. 2013.
94.
go back to reference B. Olshausen and D. Field “Emergence of simple-cell receptive field properties by learning a sparse code for natural images”, Nature vol. 381, pp. 607-609, 1996. B. Olshausen and D. Field “Emergence of simple-cell receptive field properties by learning a sparse code for natural images”, Nature vol. 381, pp. 607-609, 1996.
95.
go back to reference D. Donoho, “Sparse Components Analysis and Optimal Atomic Decomposition”, Technical Report, Statistics, Stanford, 1998. D. Donoho, “Sparse Components Analysis and Optimal Atomic Decomposition”, Technical Report, Statistics, Stanford, 1998.
96.
go back to reference E. J. Candes, D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Stanford University, 1999. E. J. Candes, D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Stanford University, 1999.
97.
go back to reference E. J. Candes and D. L. Donoho, “New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities,” Comm. Pure Appl. Math., vol. 57, no. 2, pp. 219–266, 2004.CrossRef E. J. Candes and D. L. Donoho, “New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities,” Comm. Pure Appl. Math., vol. 57, no. 2, pp. 219–266, 2004.CrossRef
98.
go back to reference G. Kutyniok, Shearlets: Multiscale analysis for multivariate data. Springer Science & Business Media, 2012. G. Kutyniok, Shearlets: Multiscale analysis for multivariate data. Springer Science & Business Media, 2012.
99.
go back to reference M. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091–2106, Dec 2005.CrossRef M. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091–2106, Dec 2005.CrossRef
100.
go back to reference G.Easley, D.Labate, and W.-Q.Lim, “Optimally sparse image representations using shearlets,” in Proc. Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC ’06), pp. 974–978, Oct 2006. G.Easley, D.Labate, and W.-Q.Lim, “Optimally sparse image representations using shearlets,” in Proc. Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC ’06), pp. 974–978, Oct 2006.
101.
go back to reference G. Kutyniok and W.-Q. Lim, “Compactly supported shearlets are optimally sparse,” J. of Approximation Theory, vol. 163, no. 11, pp. 1564 – 1589, 2011.MathSciNetCrossRef G. Kutyniok and W.-Q. Lim, “Compactly supported shearlets are optimally sparse,” J. of Approximation Theory, vol. 163, no. 11, pp. 1564 – 1589, 2011.MathSciNetCrossRef
102.
go back to reference J.-L. Starck, Y. Moudden, J. Bobin, M. Elad, and D. L. Donoho, “Morphological Component Analysis,” in Proc. SPIE 5914 Wavelets XI, 59140Q, May 2005. J.-L. Starck, Y. Moudden, J. Bobin, M. Elad, and D. L. Donoho, “Morphological Component Analysis,” in Proc. SPIE 5914 Wavelets XI, 59140Q, May 2005.
103.
go back to reference J. Fadili, J.-L. Starck, M. Elad, and D. Donoho, “Mcalab: Reproducible Research in Signal and Image Decomposition and Inpainting,” IEEE Computing in Science & Engineering, vol. 12, no. 1, pp. 44–63, 2010. J. Fadili, J.-L. Starck, M. Elad, and D. Donoho, “Mcalab: Reproducible Research in Signal and Image Decomposition and Inpainting,” IEEE Computing in Science & Engineering, vol. 12, no. 1, pp. 44–63, 2010.
104.
go back to reference L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain,” ACM Trans. on Graphics, vol. 34, no. 1, 2014.CrossRef L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain,” ACM Trans. on Graphics, vol. 34, no. 1, 2014.CrossRef
105.
go back to reference K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Transactions on Graphics, vol. 32, no. 4, pp. 1-11, 2013.CrossRef K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Transactions on Graphics, vol. 32, no. 4, pp. 1-11, 2013.CrossRef
106.
go back to reference Z. Li, Image patch modeling in a light field. PhD thesis, EECS Department, University of California, Berkeley, May 2014. Z. Li, Image patch modeling in a light field. PhD thesis, EECS Department, University of California, Berkeley, May 2014.
107.
go back to reference D. C. Schedl, C. Birklbauer, and O. Bimber, “Directional Super-Resolution by Means of Coded Sampling and Guided Upsampling,” in Proc. IEEE Conf. Computational Photography (ICCP), pp. 1–10, 2015. D. C. Schedl, C. Birklbauer, and O. Bimber, “Directional Super-Resolution by Means of Coded Sampling and Guided Upsampling,” in Proc. IEEE Conf. Computational Photography (ICCP), pp. 1–10, 2015.
108.
go back to reference O. Johannsen, A. Sulc, and B. Goldluecke, "What Sparse Light Field Coding Reveals about Scene Structure," in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 3262-3270, 2016. O. Johannsen, A. Sulc, and B. Goldluecke, "What Sparse Light Field Coding Reveals about Scene Structure," in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 3262-3270, 2016.
109.
go back to reference N.K. Kalantari, T.-C. Wangand and R. Ramamoorthi, “Learning-Based View Synthesis for Light Field Cameras,” ACM Trans. on Graphics, vol. 35, no. 6, 2016.CrossRef N.K. Kalantari, T.-C. Wangand and R. Ramamoorthi, “Learning-Based View Synthesis for Light Field Cameras,” ACM Trans. on Graphics, vol. 35, no. 6, 2016.CrossRef
Metadata
Title
Signal Processing Methods for Light Field Displays
Authors
Robert Bregovic
Erdem Sahin
Suren Vagharshakyan
Atanas Gotchev
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91734-4_1