Skip to main content
Top

2018 | OriginalPaper | Chapter

Silhouette-Based Human Action Recognition by Embedding HOG and PCA Features

Authors : A. S. Jahagirdar, M. S. Nagmode

Published in: Intelligent Computing and Information and Communication

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Human action recognition has become vital aspect of video analytics. This study explores methods for the classification of human actions by extracting silhouette of object and then applying feature extraction. The method proposes to integrate HOG feature and PCA feature effectively to form a feature descriptor which is used further to train KNN classifier. HOG gives local shape-oriented variations of the object while PCA gives global information about frequently moving parts of human body. Experiments conducted on Weizmann and KTH datasets show results comparable with existing methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmad, Mohiuddin, Irine Parvin, and Seong-Whan Lee: Silhouette History and Energy Image Information for Human Movement Recognition, Journal of Multimedia, 2010. Ahmad, Mohiuddin, Irine Parvin, and Seong-Whan Lee: Silhouette History and Energy Image Information for Human Movement Recognition, Journal of Multimedia, 2010.
2.
go back to reference Zhen X, Shao L: Action recognition via spatio-temporal local features: A comprehensive study, Image and Vision Computing. 2016 Jun 30, 50:1–3. Zhen X, Shao L: Action recognition via spatio-temporal local features: A comprehensive study, Image and Vision Computing. 2016 Jun 30, 50:1–3.
3.
go back to reference Cheng, Shilei, et al.: Action Recognition Based on Spatio-temporal Log-Euclidean Covariance Matrix, International Journal of Signal Processing, Image Processing and Pattern Recognition 9.2 (2016): 95–106. Cheng, Shilei, et al.: Action Recognition Based on Spatio-temporal Log-Euclidean Covariance Matrix, International Journal of Signal Processing, Image Processing and Pattern Recognition 9.2 (2016): 95–106.
4.
go back to reference Carvajal, Johanna, et al.: Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions, arXiv preprint arXiv:1602.01599 (2016). Carvajal, Johanna, et al.: Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions, arXiv preprint arXiv:​1602.​01599 (2016).
5.
go back to reference Patel C, Garg S, Zaveri T, Banerjee A, Patel R: Human action recognition using fusion of features for unconstrained video sequences, Computers & Electrical Engineering, 2016 Jun 18. Patel C, Garg S, Zaveri T, Banerjee A, Patel R: Human action recognition using fusion of features for unconstrained video sequences, Computers & Electrical Engineering, 2016 Jun 18.
6.
go back to reference Zhen, Xiantong et al.: Embedding motion and structure features for action recognition, IEEE transaction on Circuits and Systems for Video Technology 23.7 (2013): 1182–1190. Zhen, Xiantong et al.: Embedding motion and structure features for action recognition, IEEE transaction on Circuits and Systems for Video Technology 23.7 (2013): 1182–1190.
7.
go back to reference Feichtenhofer C, Pinz A, Zisserman A: Convolutional two stream network fusion for video action recognition, in IEEE conference on Computer Vision and Pattern Recognition 2016 (pp. 1933–1941). Feichtenhofer C, Pinz A, Zisserman A: Convolutional two stream network fusion for video action recognition, in IEEE conference on Computer Vision and Pattern Recognition 2016 (pp. 1933–1941).
8.
go back to reference Ijjina EP, Chalavadi KM: Human action recognition using genetic algorithms and convolutional neural networks, Pattern Recognition, 2016 Nov 30: 59: 199–212. Ijjina EP, Chalavadi KM: Human action recognition using genetic algorithms and convolutional neural networks, Pattern Recognition, 2016 Nov 30: 59: 199–212.
9.
go back to reference Liu L, Shao L, Li X: Learning spatio-temporal representations for action recognition: A genetic programming approach, IEEE Transaction on cybernetics, 2016 Jan;46(1):158–70. Liu L, Shao L, Li X: Learning spatio-temporal representations for action recognition: A genetic programming approach, IEEE Transaction on cybernetics, 2016 Jan;46(1):158–70.
10.
go back to reference Kuehne H, Gall J, Serre T: An end to end generative framework for video segmentation and recognition, In Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on 2016 Mar 7 (pp. 1–8). Kuehne H, Gall J, Serre T: An end to end generative framework for video segmentation and recognition, In Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on 2016 Mar 7 (pp. 1–8).
11.
go back to reference Oruganti VR, Goecke R: On the Dimensionality reduction of Fisher vectors for human action recognition, IET Computer Vision. 2016 Feb 26;10(5):392–7. Oruganti VR, Goecke R: On the Dimensionality reduction of Fisher vectors for human action recognition, IET Computer Vision. 2016 Feb 26;10(5):392–7.
12.
go back to reference Huang S, Ye J, Wang T, Jiang L, Wu X, Li Y: Extracting refined low rank features of robust PCA for human action recognition, Arabian Journal for Science and Engineering. 2015 May 1;40(5):1427–41. Huang S, Ye J, Wang T, Jiang L, Wu X, Li Y: Extracting refined low rank features of robust PCA for human action recognition, Arabian Journal for Science and Engineering. 2015 May 1;40(5):1427–41.
13.
go back to reference Lu WL, Little JJ: Simultaneous tracking and action recognition using the PCA-HOG descriptor, in Computer and Robot Vision, 2006, The 3rd Canadian Conference on 2006 Jun 7 (pp. 6–6) IEEE. Lu WL, Little JJ: Simultaneous tracking and action recognition using the PCA-HOG descriptor, in Computer and Robot Vision, 2006, The 3rd Canadian Conference on 2006 Jun 7 (pp. 6–6) IEEE.
14.
go back to reference Chivers, Daniel Stephen: Human Action Recognition by Principal Component Analysis of Motion Curves, Diss. Wright State University, 2012. Chivers, Daniel Stephen: Human Action Recognition by Principal Component Analysis of Motion Curves, Diss. Wright State University, 2012.
15.
go back to reference Vrigkas, Michalis et al.: Matching Mixtures of curves for human action recognition, Computer Vision and Image Understanding 119(2014):27–40. Vrigkas, Michalis et al.: Matching Mixtures of curves for human action recognition, Computer Vision and Image Understanding 119(2014):27–40.
16.
go back to reference Dalal Nvneet, Bill Triggs: Histogram of oriented gradients for human detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1 IEEE, 2005. Dalal Nvneet, Bill Triggs: Histogram of oriented gradients for human detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1 IEEE, 2005.
17.
go back to reference Dalal Navneet, Bill Triggs and Cordelia Schmid: Human detection using oriented histograms of flow and appearance, European conference on computer vision, Springer Berlin, Heidelberg, 2006. Dalal Navneet, Bill Triggs and Cordelia Schmid: Human detection using oriented histograms of flow and appearance, European conference on computer vision, Springer Berlin, Heidelberg, 2006.
18.
go back to reference Bouwmans, Thierry: Traditional and recent approaches in background modeling for foreground detection: An overview, Computer Science Review 11 (2014): 31–66. Bouwmans, Thierry: Traditional and recent approaches in background modeling for foreground detection: An overview, Computer Science Review 11 (2014): 31–66.
20.
go back to reference Kim, Tae-Seong and Zia Uddin: Silhouette-based Human Activity Recognition Using Independent Component Analysis, Linear Discriminant Analysis and Hidden Markov Model, New Developments in Biomedical Engineering. InTech, 2010. Kim, Tae-Seong and Zia Uddin: Silhouette-based Human Activity Recognition Using Independent Component Analysis, Linear Discriminant Analysis and Hidden Markov Model, New Developments in Biomedical Engineering. InTech, 2010.
21.
go back to reference Blank, Moshe, et al.: Actions as space-time shapes, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. Vol. 2. IEEE, 2005. Blank, Moshe, et al.: Actions as space-time shapes, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. Vol. 2. IEEE, 2005.
22.
go back to reference Schuldt, Christian, Ivan Laptev, and Barbara Caputo: Recognizing human actions: a local SVM approach, Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. Vol. 3. IEEE, 2004. Schuldt, Christian, Ivan Laptev, and Barbara Caputo: Recognizing human actions: a local SVM approach, Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. Vol. 3. IEEE, 2004.
23.
go back to reference Siddiqi, Muhammad Hameed, et al.: Video based Human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis, Sensors 14.4 (2014):6370–6392. Siddiqi, Muhammad Hameed, et al.: Video based Human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis, Sensors 14.4 (2014):6370–6392.
24.
go back to reference Junejo, Imran N., Khurrum Nazir Junejo, Zaher Al Aghbari: Silhouette-based human action recognition using SAX-Shapes, The Visual Computer 30.3 (2014):259–269. Junejo, Imran N., Khurrum Nazir Junejo, Zaher Al Aghbari: Silhouette-based human action recognition using SAX-Shapes, The Visual Computer 30.3 (2014):259–269.
25.
go back to reference Chaaraoui, Alexandros Andre, Pau Climenr_Perez, Francisco Florez-Revuelta: Silhouette-based human action recognition using sequences of key poses, Pattern Recognition Letters 34.15 (2013): 1799–1807. Chaaraoui, Alexandros Andre, Pau Climenr_Perez, Francisco Florez-Revuelta: Silhouette-based human action recognition using sequences of key poses, Pattern Recognition Letters 34.15 (2013): 1799–1807.
Metadata
Title
Silhouette-Based Human Action Recognition by Embedding HOG and PCA Features
Authors
A. S. Jahagirdar
M. S. Nagmode
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7245-1_36

Premium Partner