Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2022

24-02-2022 | Technical Article

Silicon Modified Polyethylene as Foam Stabilizer and its Effect on Cell Structure and Mechanical Properties of Polypropylene Foam

Authors: Jingqian Deng, Junyi Guo, Zhongjie Du, Chen Zhang, Shengke Liang, Peng Kong, Wei Zou

Published in: Journal of Materials Engineering and Performance | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polypropylene (PP) foams have received tremendous attention because of its outstanding performance such as higher tensile modulus, impact resistance and excellent chemical resistance. But the poor pore structure on account of low melt strength leads to poor mechanical properties. In this work, a novel organic silicon-carbon type foam stabilizer was introduced to obtain PP foam with excellent properties. The foam stabilizer contained long carbon chain with good compatibility with the PP melt as well as -Si-O-Si- with good compatibility with the cells. Thus, the surface tension of the system was reduced. The results shown that the foam stabilizer we prepared could significantly reduce the size, size distribution and density of the cells. Besides, when 1.0 wt.% of foam stabilizer was added, the mechanical properties had also been significantly improved: the tensile strength and the elongation at break was 18.7 MPa and 499%, increased by 16.1 and 55%, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain and P. Gupta, Advance Research Progresses in Aluminium Matrix Composites: Manufacturing & Applications, J. Mater. Res. Technol., 2019, 8, p 4924–4939.CrossRef P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain and P. Gupta, Advance Research Progresses in Aluminium Matrix Composites: Manufacturing & Applications, J. Mater. Res. Technol., 2019, 8, p 4924–4939.CrossRef
2.
go back to reference A. Jamwal, P. Mittal, R. Agrawal, S. Gupta, D. Kumar, K.K. Sadasivuni and P. Gupta, Towards Sustainable Copper Matrix Composites: Manufacturing Routes with Structural, Mechanical, Electrical and Corrosion Behavior, J. Compos. Mater., 2020, 54, p 2635–2649.CrossRef A. Jamwal, P. Mittal, R. Agrawal, S. Gupta, D. Kumar, K.K. Sadasivuni and P. Gupta, Towards Sustainable Copper Matrix Composites: Manufacturing Routes with Structural, Mechanical, Electrical and Corrosion Behavior, J. Compos. Mater., 2020, 54, p 2635–2649.CrossRef
3.
go back to reference N. Ahamad, A. Mohammad, K.K. Sadasivuni and P. Gupta, Phase, Microstructure and Tensile Strength of Al–Al2O3–C Hybrid Metal Matrix Composites, P. I. Mech. Eng. C-J mec, 2020, 234, p 2681–2693.CrossRef N. Ahamad, A. Mohammad, K.K. Sadasivuni and P. Gupta, Phase, Microstructure and Tensile Strength of Al–Al2O3–C Hybrid Metal Matrix Composites, P. I. Mech. Eng. C-J mec, 2020, 234, p 2681–2693.CrossRef
4.
go back to reference E. Reverchon and S. Cardea, Production of Controlled Polymeric Foams by Supercritical CO2, J. Supercrit. Fluid., 2007, 40, p 144–152.CrossRef E. Reverchon and S. Cardea, Production of Controlled Polymeric Foams by Supercritical CO2, J. Supercrit. Fluid., 2007, 40, p 144–152.CrossRef
5.
go back to reference M.C. Saha, H. Mahfuz, U.K. Chakravarty, M. Uddin, M.E. Kabir and S. Jeelani, Effect of Density, Microstructure, and Strain Rate on Compression Behavior of polymeric Foams, Mat. Sci. Eng. A-Struct., 2005, 406, p 328–336.CrossRef M.C. Saha, H. Mahfuz, U.K. Chakravarty, M. Uddin, M.E. Kabir and S. Jeelani, Effect of Density, Microstructure, and Strain Rate on Compression Behavior of polymeric Foams, Mat. Sci. Eng. A-Struct., 2005, 406, p 328–336.CrossRef
6.
go back to reference W. Leng and B. Pan, Thermal Insulating And Mechanical Properties of Cellulose Nanofibrils Modified Polyurethane Foam Composite as Structural Insulated Material, Forests, 2019, 10, p 200.CrossRef W. Leng and B. Pan, Thermal Insulating And Mechanical Properties of Cellulose Nanofibrils Modified Polyurethane Foam Composite as Structural Insulated Material, Forests, 2019, 10, p 200.CrossRef
7.
go back to reference J. Jeddi and A.A. Katbab, The Electrical Conductivity and EMI Shielding Properties of Polyurethane Foam/Silicone Rubber/Carbon Black/Nanographite Hybrid Composites, Polym. Compos., 2018, 39, p 3452–3460.CrossRef J. Jeddi and A.A. Katbab, The Electrical Conductivity and EMI Shielding Properties of Polyurethane Foam/Silicone Rubber/Carbon Black/Nanographite Hybrid Composites, Polym. Compos., 2018, 39, p 3452–3460.CrossRef
8.
go back to reference C.B. Park and L.K. Cheung, A Study of Cell Nucleation in the Extrusion of Polypropylene Foams, Polym. Eng. Sci., 1997, 37, p 1–10.CrossRef C.B. Park and L.K. Cheung, A Study of Cell Nucleation in the Extrusion of Polypropylene Foams, Polym. Eng. Sci., 1997, 37, p 1–10.CrossRef
9.
go back to reference J. Hou, G. Zhao, L. Zhang, G. Wang and B. Li, High-Expansion Polypropylene Foam Prepared in Non-Crystalline State and Oil Adsorption Performance of Open-Cell Foam, J. Colloid. Interface Sci., 2019, 542, p 233–242.CrossRef J. Hou, G. Zhao, L. Zhang, G. Wang and B. Li, High-Expansion Polypropylene Foam Prepared in Non-Crystalline State and Oil Adsorption Performance of Open-Cell Foam, J. Colloid. Interface Sci., 2019, 542, p 233–242.CrossRef
10.
go back to reference Z.M. Xu, X.L. Jiang, T. Liu, G.H. Hu, L. Zhao, Z.N. Zhu and W.K. Yuan, Foaming of Polypropylene with Supercritical Carbon Dioxide, J. Supercrit. Fluid., 2007, 41, p 299–310.CrossRef Z.M. Xu, X.L. Jiang, T. Liu, G.H. Hu, L. Zhao, Z.N. Zhu and W.K. Yuan, Foaming of Polypropylene with Supercritical Carbon Dioxide, J. Supercrit. Fluid., 2007, 41, p 299–310.CrossRef
11.
go back to reference C.C. Kuo, L.C. Liu, W.C. Liang, H.C. Liu and C.M. Chen, Preparation of Polypropylene (PP) Composite Foams with High Impact Strengths by Supercritical Carbon Dioxide and Their Feasible Evaluation for Electronic Packages, Compos. B. Eng., 2015, 79, p 1–5.CrossRef C.C. Kuo, L.C. Liu, W.C. Liang, H.C. Liu and C.M. Chen, Preparation of Polypropylene (PP) Composite Foams with High Impact Strengths by Supercritical Carbon Dioxide and Their Feasible Evaluation for Electronic Packages, Compos. B. Eng., 2015, 79, p 1–5.CrossRef
12.
go back to reference Y. Li, Z. Yao, Z.H. Chen, S.L. Qiu, C. Zeng and K. Cao, High Melt Strength Polypropylene by Ionic Modification: Preparation, Rheological Properties and Foaming Behaviors, Polymer, 2015, 70, p 207–214.CrossRef Y. Li, Z. Yao, Z.H. Chen, S.L. Qiu, C. Zeng and K. Cao, High Melt Strength Polypropylene by Ionic Modification: Preparation, Rheological Properties and Foaming Behaviors, Polymer, 2015, 70, p 207–214.CrossRef
13.
go back to reference A. Mohebbi, F. Mighri, A. Ajji and D. Rodrigue, Current Issues and Challenges in Polypropylene Foaming: A Review, Cel. Polym., 2015, 34, p 299–338.CrossRef A. Mohebbi, F. Mighri, A. Ajji and D. Rodrigue, Current Issues and Challenges in Polypropylene Foaming: A Review, Cel. Polym., 2015, 34, p 299–338.CrossRef
14.
go back to reference X. Zhang, B. Li, X. Wang, K. Li, G. Wang, J. Chen and C.B. Park, Modification of iPP Microcellular Foaming Behavior by thermal History Control and Nucleating Agent at Compressed CO2, J. Supercrit. Fluid., 2018, 133, p 383–392.CrossRef X. Zhang, B. Li, X. Wang, K. Li, G. Wang, J. Chen and C.B. Park, Modification of iPP Microcellular Foaming Behavior by thermal History Control and Nucleating Agent at Compressed CO2, J. Supercrit. Fluid., 2018, 133, p 383–392.CrossRef
15.
go back to reference D. Fu, F. Chen, T. Kuang, D. Li, X. Peng, D.Y. Chiu and L.J. Lee, Supercritical CO2 Foaming of Pressure-Induced-Flow Processed Linear Polypropylene, Mater. Design., 2016, 93, p 509–513.CrossRef D. Fu, F. Chen, T. Kuang, D. Li, X. Peng, D.Y. Chiu and L.J. Lee, Supercritical CO2 Foaming of Pressure-Induced-Flow Processed Linear Polypropylene, Mater. Design., 2016, 93, p 509–513.CrossRef
16.
go back to reference L. Wang, S. Ishihara, M. Ando, A. Minato, Y. Hikima and M. Ohshima, Fabrication of High Expansion Microcellular Injection-Molded Polypropylene Foams by Adding Long-Chain Branches, Ind. Eng. Chem. Res., 2016, 55, p 11970–11982.CrossRef L. Wang, S. Ishihara, M. Ando, A. Minato, Y. Hikima and M. Ohshima, Fabrication of High Expansion Microcellular Injection-Molded Polypropylene Foams by Adding Long-Chain Branches, Ind. Eng. Chem. Res., 2016, 55, p 11970–11982.CrossRef
17.
go back to reference Y. Zhang, J.S. Parent, M. Kontopoulou and C.B. Park, Foaming of Reactively Modified Polypropylene: Effects of Rheology and Coagent Type, J. Cell. Plast., 2015, 51, p 505–522.CrossRef Y. Zhang, J.S. Parent, M. Kontopoulou and C.B. Park, Foaming of Reactively Modified Polypropylene: Effects of Rheology and Coagent Type, J. Cell. Plast., 2015, 51, p 505–522.CrossRef
18.
go back to reference H.E. Naguib, C.B. Park, U. Panzer and N. Reichelt, Strategies for Achieving Ultra Low-Density PP Foams, Polym. Eng. Sci., 2002, 42, p 1481–1492.CrossRef H.E. Naguib, C.B. Park, U. Panzer and N. Reichelt, Strategies for Achieving Ultra Low-Density PP Foams, Polym. Eng. Sci., 2002, 42, p 1481–1492.CrossRef
19.
go back to reference W.T. Zhai, H.Y. Wang, J. Yu, J.Y. Dong and J.S. He, Cell Coalescence Suppressed by Crosslinking Structure in Polypropylene Microcellular Foaming, Polym. Eng. Sci., 2008, 48, p 1312–1321.CrossRef W.T. Zhai, H.Y. Wang, J. Yu, J.Y. Dong and J.S. He, Cell Coalescence Suppressed by Crosslinking Structure in Polypropylene Microcellular Foaming, Polym. Eng. Sci., 2008, 48, p 1312–1321.CrossRef
20.
go back to reference K. Taki, T. Nakayama, T. Yatsuzuka and M. Ohshima, Visual Observations of Batch and Continuous Foaming Processes, J. Cell. Plast., 2003, 39, p 155–169.CrossRef K. Taki, T. Nakayama, T. Yatsuzuka and M. Ohshima, Visual Observations of Batch and Continuous Foaming Processes, J. Cell. Plast., 2003, 39, p 155–169.CrossRef
21.
go back to reference D.H. Han, J.H. Jang, H.Y. Kim, B.N. Kim and B.Y. Shin, Manufacturing and Foaming of High Melt Viscosity of Polypropylene by Using Electron Beam Radiation Technology, Polym. Eng. Sci., 2006, 46, p 431–437.CrossRef D.H. Han, J.H. Jang, H.Y. Kim, B.N. Kim and B.Y. Shin, Manufacturing and Foaming of High Melt Viscosity of Polypropylene by Using Electron Beam Radiation Technology, Polym. Eng. Sci., 2006, 46, p 431–437.CrossRef
22.
go back to reference S. Kamath, A. Wulandewi and H. Deeth, Relationship Between Surface Tension, Free Fatty Acid Concentration and Foaming Properties of Milk, Food Res. Int., 2008, 41, p 623–629.CrossRef S. Kamath, A. Wulandewi and H. Deeth, Relationship Between Surface Tension, Free Fatty Acid Concentration and Foaming Properties of Milk, Food Res. Int., 2008, 41, p 623–629.CrossRef
23.
go back to reference B. Dehdari, R. Parsaei, M. Riazi, N. Rezaei and S. Zendehboudi, New Insight Into Foam Stability Enhancement Mechanism, Using polyvinyl Alcohol (PVA) and Nanoparticles, J. Mol. Liq., 2020, 307, p 112755.CrossRef B. Dehdari, R. Parsaei, M. Riazi, N. Rezaei and S. Zendehboudi, New Insight Into Foam Stability Enhancement Mechanism, Using polyvinyl Alcohol (PVA) and Nanoparticles, J. Mol. Liq., 2020, 307, p 112755.CrossRef
24.
go back to reference X. Yuanliang, L. Baoliang, C. Chun and Z. Yamei, Properties of Foamed Concrete with Ca (OH)2 as Foam Stabilizer, Cem. Concr. Compos., 2021, 118, p 103985.CrossRef X. Yuanliang, L. Baoliang, C. Chun and Z. Yamei, Properties of Foamed Concrete with Ca (OH)2 as Foam Stabilizer, Cem. Concr. Compos., 2021, 118, p 103985.CrossRef
25.
go back to reference S.A. Snow and R.E. Stevens, The science of silicone surfactant application in the formation of polyurethane foam, Silicone Surfactants. Routledge, UK, 2019, p 137–158CrossRef S.A. Snow and R.E. Stevens, The science of silicone surfactant application in the formation of polyurethane foam, Silicone Surfactants. Routledge, UK, 2019, p 137–158CrossRef
26.
go back to reference M. Oliviero, M. Stanzione, M. D’Auria, L. Sorrentino, S. Iannace and L. Verdolotti, Vegetable Tannin as a Sustainable UV Stabilizer for Polyurethane Foams, Polymers, 2019, 11, p 480.CrossRef M. Oliviero, M. Stanzione, M. D’Auria, L. Sorrentino, S. Iannace and L. Verdolotti, Vegetable Tannin as a Sustainable UV Stabilizer for Polyurethane Foams, Polymers, 2019, 11, p 480.CrossRef
27.
go back to reference M. Khajehpour, R. Etminan, J. Goldman, F. Wassmuth and S. Bryant, Nanoparticles as Foam Stabilizer for Steam-Foam Process, SPE J., 2018, 23, p 2232–2242.CrossRef M. Khajehpour, R. Etminan, J. Goldman, F. Wassmuth and S. Bryant, Nanoparticles as Foam Stabilizer for Steam-Foam Process, SPE J., 2018, 23, p 2232–2242.CrossRef
28.
go back to reference A.R. Albooyeh, The Effect of Addition of Multiwall Carbon Nanotubes on the Vibration Properties of Short Glass Fiber Reinforced Polypropylene and Polypropylene Foam Composites, Polym. Test., 2019, 74, p 86–98.CrossRef A.R. Albooyeh, The Effect of Addition of Multiwall Carbon Nanotubes on the Vibration Properties of Short Glass Fiber Reinforced Polypropylene and Polypropylene Foam Composites, Polym. Test., 2019, 74, p 86–98.CrossRef
29.
go back to reference Q.B. Ho and M. Kontopoulou, Stabilization of the Cellular Structure of Polypropylene Foams and Secondary Nucleation Mechanism in the Presence of Graphene Nanoplatelets, Polymer, 2020, 198, p 122506.CrossRef Q.B. Ho and M. Kontopoulou, Stabilization of the Cellular Structure of Polypropylene Foams and Secondary Nucleation Mechanism in the Presence of Graphene Nanoplatelets, Polymer, 2020, 198, p 122506.CrossRef
30.
go back to reference A. Jamwal, P.P. Seth, D. Kumar, R. Agrawal, K.K. Sadasivuni and P. Gupta, Microstructural, Tribological and Compression Behaviour of Copper Matrix Reinforced with Graphite-SiC Hybrid Composites, Mater. Chem. Phys., 2020, 251, p 123090.CrossRef A. Jamwal, P.P. Seth, D. Kumar, R. Agrawal, K.K. Sadasivuni and P. Gupta, Microstructural, Tribological and Compression Behaviour of Copper Matrix Reinforced with Graphite-SiC Hybrid Composites, Mater. Chem. Phys., 2020, 251, p 123090.CrossRef
31.
go back to reference N. Ahamad, A. Mohammad, K.K. Sadasivuni and P. Gupta, Structural and Mechanical Characterization of Stir Cast Al–Al2O3–TiO2 Hybrid Metal Matrix Composites, J. Compos. Mater., 2020, 54, p 2985–2997.CrossRef N. Ahamad, A. Mohammad, K.K. Sadasivuni and P. Gupta, Structural and Mechanical Characterization of Stir Cast Al–Al2O3–TiO2 Hybrid Metal Matrix Composites, J. Compos. Mater., 2020, 54, p 2985–2997.CrossRef
32.
go back to reference N. Ahamad, A. Mohammad, K.K. Sadasivuni and P. Gupta, Wear, Optimization and Surface Analysis of Al-Al2O3-TiO2 Hybrid Metal Matrix Composites, P. I. Mech. Eng. E-J. Pro., 2021, 235, p 93–102.CrossRef N. Ahamad, A. Mohammad, K.K. Sadasivuni and P. Gupta, Wear, Optimization and Surface Analysis of Al-Al2O3-TiO2 Hybrid Metal Matrix Composites, P. I. Mech. Eng. E-J. Pro., 2021, 235, p 93–102.CrossRef
33.
go back to reference X.D. Zhang, C.W. Macosko, H.T. Davis, A.D. Nikolov and D.T. Wasan, Role of Silicone Surfactant in Flexible Polyurethane Foam, J. Colloid. Interface Sci., 1999, 215, p 270–279.CrossRef X.D. Zhang, C.W. Macosko, H.T. Davis, A.D. Nikolov and D.T. Wasan, Role of Silicone Surfactant in Flexible Polyurethane Foam, J. Colloid. Interface Sci., 1999, 215, p 270–279.CrossRef
34.
go back to reference H.S. Lim, S.H. Kim and B.K. Kim, Effects of Silicon Surfactant in Rigid Polyurethane Foams, Express Polym. Lett., 2008, 2, p 194–200.CrossRef H.S. Lim, S.H. Kim and B.K. Kim, Effects of Silicon Surfactant in Rigid Polyurethane Foams, Express Polym. Lett., 2008, 2, p 194–200.CrossRef
35.
go back to reference J. Guo, C. Zhang, S. Liang and W. Zou, Fabrication of Foamed Polypropylene with Excellent Behaviors by Adding a Special Foam Stabilizer, Polym. Eng. Sci., 2020, 60, p 2619–2627.CrossRef J. Guo, C. Zhang, S. Liang and W. Zou, Fabrication of Foamed Polypropylene with Excellent Behaviors by Adding a Special Foam Stabilizer, Polym. Eng. Sci., 2020, 60, p 2619–2627.CrossRef
36.
go back to reference M.S. Han, S.J. Choi, J.M. Kim, Y.H. Kim, W.N. Kim, H.S. Lee and J.Y. Sung, Effects of Silicone Surfactant on the Cell Size And Thermal Conductivity of Rigid Polyurethane Foams by Environmentally Friendly Blowing Agents, Macromol. Res., 2009, 17, p 44–50.CrossRef M.S. Han, S.J. Choi, J.M. Kim, Y.H. Kim, W.N. Kim, H.S. Lee and J.Y. Sung, Effects of Silicone Surfactant on the Cell Size And Thermal Conductivity of Rigid Polyurethane Foams by Environmentally Friendly Blowing Agents, Macromol. Res., 2009, 17, p 44–50.CrossRef
37.
go back to reference Y. Chen, Z. Jia, Y. Luo, D. Jia and B. Li, Environmentally Friendly Flame-Retardant and its Application In Rigid Polyurethane Foam, Int. J. Polym. Sci., 2014, 2014, p 263716. Y. Chen, Z. Jia, Y. Luo, D. Jia and B. Li, Environmentally Friendly Flame-Retardant and its Application In Rigid Polyurethane Foam, Int. J. Polym. Sci., 2014, 2014, p 263716.
38.
go back to reference N. Mantaranon and S. Chirachanchai, Polyoxymethylene Foam: From an Investigation of Key Factors Related To Porous Morphologies and Microstructure to the Optimization of Foam Properties, Polymer, 2016, 96, p 54–62.CrossRef N. Mantaranon and S. Chirachanchai, Polyoxymethylene Foam: From an Investigation of Key Factors Related To Porous Morphologies and Microstructure to the Optimization of Foam Properties, Polymer, 2016, 96, p 54–62.CrossRef
39.
go back to reference Q.L. Chen, R.Y. Li, K.W. Sun, J.C. Li and C.H. Liu, Preparation of Bio-Degradable Polyurethane Foams from Liquefied Wheat Straw, Adv. Mater. Res., 2011, 217, p 1239–1244. Q.L. Chen, R.Y. Li, K.W. Sun, J.C. Li and C.H. Liu, Preparation of Bio-Degradable Polyurethane Foams from Liquefied Wheat Straw, Adv. Mater. Res., 2011, 217, p 1239–1244.
Metadata
Title
Silicon Modified Polyethylene as Foam Stabilizer and its Effect on Cell Structure and Mechanical Properties of Polypropylene Foam
Authors
Jingqian Deng
Junyi Guo
Zhongjie Du
Chen Zhang
Shengke Liang
Peng Kong
Wei Zou
Publication date
24-02-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06721-8

Other articles of this Issue 8/2022

Journal of Materials Engineering and Performance 8/2022 Go to the issue

Premium Partners