Skip to main content
Top
Published in: Neural Computing and Applications 2/2023

03-10-2022 | Original Article

Simulating a complete Tritonia escape swim network using a novel event-based spiking neural network algorithm

Authors: Fatemehossadat Miri, Carol I. Miles, Harold W. Lewis III

Published in: Neural Computing and Applications | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tritonia has been studied in the laboratory by several studies, which have led to significant advances in identifying the biological components that participate in the Tritonia escape swim network. There are also studies, which have artificially reproduced the neuronal patterns of the Tritonia escape swim circuit. These studies simulated the interneurons of the swim central pattern generator (CPG) known as dorsal swim interneuron, ventral swim interneuron, and cerebral 2. In this research, other neurons that participate in the Tritonia escape swim network were simulated. In addition to the main CPG components, sensory, ramp, and dorsal/ventral flexion neurons are all included in the neural network (NN). The objective of the study was to artificially reconstruct a more representative image of the Tritonia escape swim NN, its neuronal activities, and synaptic connections. The network was simulated using a spiking neural network (SNN) simulator named Synapse, which has been implemented based on a novel event-based SNN algorithm. After tuning synaptic delays, weights, and membrane potential properties, the expected spike patterns were successfully reproduced for each involved neuron. The spike patterns from this study were validated using the laboratory recorded signals as well as the existing simulated patterns.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee AH, Megalou EV, Wang J, Frost WN (2012) Axonal conduction block as a novel mechanism of prepulse inhibition. J Neurosci 32(44):15262–15270CrossRef Lee AH, Megalou EV, Wang J, Frost WN (2012) Axonal conduction block as a novel mechanism of prepulse inhibition. J Neurosci 32(44):15262–15270CrossRef
2.
go back to reference Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J Neurophysiol 49(4):1036–1050CrossRef Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J Neurophysiol 49(4):1036–1050CrossRef
3.
go back to reference Katz PS, Sakurai A, Clemens S, Davis D (2004) Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. J Neurophysiol 92(3):1904–1917CrossRef Katz PS, Sakurai A, Clemens S, Davis D (2004) Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. J Neurophysiol 92(3):1904–1917CrossRef
4.
go back to reference Frost WN, Hoppe TA, Wang J, Tian LM (2001) Swim initiation neurons in Tritonia diomedea. Am zool 41(4):952–961 Frost WN, Hoppe TA, Wang J, Tian LM (2001) Swim initiation neurons in Tritonia diomedea. Am zool 41(4):952–961
5.
go back to reference Getting PA (1976) Afferent neurons mediating escape swimming of the marine mollusc, Tritonia. J Comp Physiol 110(3):271–286CrossRef Getting PA (1976) Afferent neurons mediating escape swimming of the marine mollusc, Tritonia. J Comp Physiol 110(3):271–286CrossRef
6.
go back to reference Getting PA (1981) Mechanisms of pattern generation underlying swimming in Tritonia. I. Neuronal network formed by monosynaptic connections. J Neurophysiol 46(1):65–79CrossRef Getting PA (1981) Mechanisms of pattern generation underlying swimming in Tritonia. I. Neuronal network formed by monosynaptic connections. J Neurophysiol 46(1):65–79CrossRef
7.
go back to reference Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J Neurophysiology 49(4):1017–1035CrossRef Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J Neurophysiology 49(4):1017–1035CrossRef
8.
go back to reference Hume RI, Getting PA (1982) Motor organization of Tritonia swimming. II. Synaptic drive to flexion neurons from premotor interneurons. J Neurophysiol 47(1):75–90CrossRef Hume RI, Getting PA (1982) Motor organization of Tritonia swimming. II. Synaptic drive to flexion neurons from premotor interneurons. J Neurophysiol 47(1):75–90CrossRef
9.
go back to reference Katz PS, Frost WN (1995) Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2. J Neurosci 15(9):6035–6045CrossRef Katz PS, Frost WN (1995) Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2. J Neurosci 15(9):6035–6045CrossRef
11.
go back to reference Mongeluzi DL, Frost WN (2000) Dishabituation of the Tritonia escape swim. Learn Mem 7(1):43–47CrossRef Mongeluzi DL, Frost WN (2000) Dishabituation of the Tritonia escape swim. Learn Mem 7(1):43–47CrossRef
13.
go back to reference Sakurai A, Katz PS (2009) Functional recovery after lesion of a central pattern generator. J Neurosci 29(42):13115–13125CrossRef Sakurai A, Katz PS (2009) Functional recovery after lesion of a central pattern generator. J Neurosci 29(42):13115–13125CrossRef
14.
go back to reference Balaban PM (1979) A system of command neurons in snail’s escape behavior. Acta Neurobiol Exp 39:97–107 Balaban PM (1979) A system of command neurons in snail’s escape behavior. Acta Neurobiol Exp 39:97–107
15.
go back to reference Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN (2007) Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98(4):2382–2398CrossRef Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN (2007) Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98(4):2382–2398CrossRef
16.
go back to reference Bichler O, Querlioz D, Thorpe SJ, Bourgoin J-P, Gamrat C (2012) Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural Netw 32:339–348CrossRef Bichler O, Querlioz D, Thorpe SJ, Bourgoin J-P, Gamrat C (2012) Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural Netw 32:339–348CrossRef
17.
go back to reference Gerstner W (2001) A framework for spiking neuron models: the spike response model. In: Handbook of biological physics, vol. 4. North-Holland, pp 469–516 Gerstner W (2001) A framework for spiking neuron models: the spike response model. In: Handbook of biological physics, vol. 4. North-Holland, pp 469–516
18.
go back to reference Carlson KD, Nageswaran JM, Dutt N, Krichmar JL (2014) An efficient automated parameter tuning framework for spiking neural networks. Front neurosci 8:10CrossRef Carlson KD, Nageswaran JM, Dutt N, Krichmar JL (2014) An efficient automated parameter tuning framework for spiking neural networks. Front neurosci 8:10CrossRef
19.
go back to reference Fickbohm DJ, Katz PS (2000) Paradoxical actions of the serotonin precursor 5-hydroxytryptophan on the activity of identified serotonergic neurons in a simple motor circuit. J Neurosci 20(4):1622–1634CrossRef Fickbohm DJ, Katz PS (2000) Paradoxical actions of the serotonin precursor 5-hydroxytryptophan on the activity of identified serotonergic neurons in a simple motor circuit. J Neurosci 20(4):1622–1634CrossRef
20.
go back to reference Frost WN, Tian L-M, Hoppe TA, Mongeluzi DL, Wang J (2003) A cellular mechanism for prepulse inhibition. Neuron 40(5):991–1001CrossRef Frost WN, Tian L-M, Hoppe TA, Mongeluzi DL, Wang J (2003) A cellular mechanism for prepulse inhibition. Neuron 40(5):991–1001CrossRef
Metadata
Title
Simulating a complete Tritonia escape swim network using a novel event-based spiking neural network algorithm
Authors
Fatemehossadat Miri
Carol I. Miles
Harold W. Lewis III
Publication date
03-10-2022
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 2/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07829-7

Other articles of this Issue 2/2023

Neural Computing and Applications 2/2023 Go to the issue

Premium Partner