Skip to main content
Top
Published in: Mechanics of Composite Materials 4/2022

17-09-2022

Simulation of Crumpling in Composite Materials via Computational Micromechanics

Authors: N. V. Turbin, R. D. Trifonov, S. S. Kovtunov

Published in: Mechanics of Composite Materials | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method for studying the crumpling of unidirectional composite material based on the computational micromechanics is proposed. A micromechanical model is used to study the elasticity and strength of a unidirectional composite material in crumpling under a fastener. The model simulates the test results on a semisample with a hole of diameter 6 mm. The effect of contact friction and fiber defects on the elastic modulus of crumpling is shown on a model that takes into account only the geometric nonlinearity. On a model with elastic-plastic properties of the matrix, the formation features of kink bands in fibers are shown and the sequence of damage initiation during crumpling is revealed. The relations obtained can be taken into account when creating a damage model of the homogenized material of a unidirectional composite layer and studying the crumpling on multidirectional lay-ups.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Montagne, F. Lachaud, E. Paroissien, and D. Martini, “Failure analysis of composite bolted joints by an experimental and a numerical approach,” ECCM 2018, 18th Europ. Conf. Compos. Mater., Athens, 24-28 June, 2020. B. Montagne, F. Lachaud, E. Paroissien, and D. Martini, “Failure analysis of composite bolted joints by an experimental and a numerical approach,” ECCM 2018, 18th Europ. Conf. Compos. Mater., Athens, 24-28 June, 2020.
2.
go back to reference V. Eremin, A. Bolshikh, V. Koroliskii, and K. Shelkov, “Methods for flexibility determination of bolted joints: Empirical formula review,” J. Phys. Conf. Ser., 1925, No. 1, 1-9 (2021).CrossRef V. Eremin, A. Bolshikh, V. Koroliskii, and K. Shelkov, “Methods for flexibility determination of bolted joints: Empirical formula review,” J. Phys. Conf. Ser., 1925, No. 1, 1-9 (2021).CrossRef
3.
go back to reference P. P. Camanho and F. L. Matthews Stress analysis and strength prediction of mechanically fastened joints in FRP: A review,” Composites: Part A, 28, No. 6, 529-547 (1997). P. P. Camanho and F. L. Matthews Stress analysis and strength prediction of mechanically fastened joints in FRP: A review,” Composites: Part A, 28, No. 6, 529-547 (1997).
4.
go back to reference E. J. Barbero, “Prediction of compression strength of unidirectional polymer matrix composites,” J. Compos. Mater., 32, No. 5, 483-502 (1998).CrossRef E. J. Barbero, “Prediction of compression strength of unidirectional polymer matrix composites,” J. Compos. Mater., 32, No. 5, 483-502 (1998).CrossRef
5.
go back to reference B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).CrossRef B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).CrossRef
6.
go back to reference B. Budiansky, N. A. Fleck, and J. C. Amazigo, “On kink-band propagation in fiber composites,” J. Mech. Phys. Solids, 46, No. 9, 1637-1653 (1998).CrossRef B. Budiansky, N. A. Fleck, and J. C. Amazigo, “On kink-band propagation in fiber composites,” J. Mech. Phys. Solids, 46, No. 9, 1637-1653 (1998).CrossRef
7.
go back to reference C. Soutis, N. A. Fleck, and P. A. Smith, “Failure prediction technique for compression loaded carbon fibre-epoxy laminate with open holes,” J. Compos. Mater., 25, No. 11, 1476-1498 (1991).CrossRef C. Soutis, N. A. Fleck, and P. A. Smith, “Failure prediction technique for compression loaded carbon fibre-epoxy laminate with open holes,” J. Compos. Mater., 25, No. 11, 1476-1498 (1991).CrossRef
8.
go back to reference M. P. F. Sutcliffe and N. A. Fleck, “Microbuckle propagation in fibre composites,” Acta Materialia, 45, No. 3, 921-932 (1997).CrossRef M. P. F. Sutcliffe and N. A. Fleck, “Microbuckle propagation in fibre composites,” Acta Materialia, 45, No. 3, 921-932 (1997).CrossRef
9.
go back to reference P. S. Wu and C. T. Sun, “Modeling bearing failure initiation in pin-contact of composite laminates,” Mech. Mater., 29, Nos. 3-4, 325-335 (1998).CrossRef P. S. Wu and C. T. Sun, “Modeling bearing failure initiation in pin-contact of composite laminates,” Mech. Mater., 29, Nos. 3-4, 325-335 (1998).CrossRef
10.
go back to reference S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling,” Compos. Sci. Technol., 69, Nos. 7-8, 948-955 (2009).CrossRef S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling,” Compos. Sci. Technol., 69, Nos. 7-8, 948-955 (2009).CrossRef
11.
go back to reference S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part II — Analytical modelling,” Compos. Sci. Technol., 69, Nos. 7-8, 956-964 (2009).CrossRef S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part II — Analytical modelling,” Compos. Sci. Technol., 69, Nos. 7-8, 956-964 (2009).CrossRef
12.
go back to reference S. Y. Hsu, T. J. Vogler, and S. Kyriakides, “Compressive strength predictions for fiber composites,” J. Appl. Mech., Trans. ASME, 65, No. 1, 7-16 (1998).CrossRef S. Y. Hsu, T. J. Vogler, and S. Kyriakides, “Compressive strength predictions for fiber composites,” J. Appl. Mech., Trans. ASME, 65, No. 1, 7-16 (1998).CrossRef
13.
go back to reference M. Herráez, A. C. Bergan, C. S. Lopes, and C. González, “Computational micromechanics model for the analysis of fiber kinking in unidirectional fiber-reinforced polymers,” Mech. Mater., 142, March, 1-25 (2020). M. Herráez, A. C. Bergan, C. S. Lopes, and C. González, “Computational micromechanics model for the analysis of fiber kinking in unidirectional fiber-reinforced polymers,” Mech. Mater., 142, March, 1-25 (2020).
14.
go back to reference B. Daum, N. Feld, O. Allix, and R. Rolfes, “A review of computational modelling approaches to compressive failure in laminates,” Compos. Sci. Technol., 181, Sept., 1-37 (2019). B. Daum, N. Feld, O. Allix, and R. Rolfes, “A review of computational modelling approaches to compressive failure in laminates,” Compos. Sci. Technol., 181, Sept., 1-37 (2019).
15.
go back to reference ASTM Standard D 953-37 Bearing Strength of Plastics, 1-8 (2019). ASTM Standard D 953-37 Bearing Strength of Plastics, 1-8 (2019).
16.
go back to reference ASTM Standard D5961/D5961M-13 Bearing Response of Polymer Matrix Composite Laminates, 1-31, (2013). ASTM Standard D5961/D5961M-13 Bearing Response of Polymer Matrix Composite Laminates, 1-31, (2013).
17.
go back to reference C. Sola, B. Castanié, L. Michel, F Lachaud., A. Delabie, and E. Mermoz, “On the role of kinking in the bearing failure of composite laminates,” Composite Structures, 141, May, 184-193 (2016). C. Sola, B. Castanié, L. Michel, F Lachaud., A. Delabie, and E. Mermoz, “On the role of kinking in the bearing failure of composite laminates,” Composite Structures, 141, May, 184-193 (2016).
18.
go back to reference O. Falcó, B. Tijs, B. Romano, and C. S. Lopes, “A virtual test lab for unidirectional coupons,” ECCM 2018, 18th Europ. Conf. Compos. Mater., Athens, 24-28 June, 2020.composite O. Falcó, B. Tijs, B. Romano, and C. S. Lopes, “A virtual test lab for unidirectional coupons,” ECCM 2018, 18th Europ. Conf. Compos. Mater., Athens, 24-28 June, 2020.composite
19.
go back to reference S. Hosseini, S. Löhnert, P. Wriggers, and E. Baranger, “A Multiscale projection method for the analysis of fiber microbuckling in fiber reinforced composites,” Lecture Notes in Appl. Comput. Mech., 93, 167-184 (2020).CrossRef S. Hosseini, S. Löhnert, P. Wriggers, and E. Baranger, “A Multiscale projection method for the analysis of fiber microbuckling in fiber reinforced composites,” Lecture Notes in Appl. Comput. Mech., 93, 167-184 (2020).CrossRef
20.
go back to reference M. Pogosyan, E. Nazarov, A. Bolshikh, V. Koroliskii, N. Turbin, and K. Shramko, “Aircraft composite structures integrated approach: A review,” J. Phys.: Conf. Ser., 1925, No. 1, 1-16 (2021). M. Pogosyan, E. Nazarov, A. Bolshikh, V. Koroliskii, N. Turbin, and K. Shramko, “Aircraft composite structures integrated approach: A review,” J. Phys.: Conf. Ser., 1925, No. 1, 1-16 (2021).
21.
go back to reference C. González and J. Llorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Compos. Sci. Technol., 67, No. 13, 2795-2806 (2007).CrossRef C. González and J. Llorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Compos. Sci. Technol., 67, No. 13, 2795-2806 (2007).CrossRef
22.
go back to reference L. P. Canal, G. Pappas, and J. Botsis, “Large scale fiber bridging in mode I intralaminar fracture. An embedded cell approach,” Compos. Sci. Technol., 126, Apr., 52-59 (2016). L. P. Canal, G. Pappas, and J. Botsis, “Large scale fiber bridging in mode I intralaminar fracture. An embedded cell approach,” Compos. Sci. Technol., 126, Apr., 52-59 (2016).
23.
go back to reference O. Pierard, C. Friebel, and I. Doghri, “Mean-field homogenization of multi-phase thermo-elastic composites: A general framework and its validation,” Compos. Sci. Technol., 64, Nos. 10-11, 1587-1603 (2004).CrossRef O. Pierard, C. Friebel, and I. Doghri, “Mean-field homogenization of multi-phase thermo-elastic composites: A general framework and its validation,” Compos. Sci. Technol., 64, Nos. 10-11, 1587-1603 (2004).CrossRef
24.
go back to reference A. V. Malakhov, A. N. Polilov, D. Li, and X. Tian, “Increasing the bearing capacity of composite plates in the zone of bolted joints by using curvilinear trajectories and a variable fiber volume fraction,” Mech. Compos. Mater., 57, No. 3, 287-300 (2021).CrossRef A. V. Malakhov, A. N. Polilov, D. Li, and X. Tian, “Increasing the bearing capacity of composite plates in the zone of bolted joints by using curvilinear trajectories and a variable fiber volume fraction,” Mech. Compos. Mater., 57, No. 3, 287-300 (2021).CrossRef
25.
go back to reference L. Zhao, K. Wang, F. Ding, T. Qin, J. Xu, F. Liu, and J. Zhang, “A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding,” Results in Physics, 13, June, 1-10 (2019). L. Zhao, K. Wang, F. Ding, T. Qin, J. Xu, F. Liu, and J. Zhang, “A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding,” Results in Physics, 13, June, 1-10 (2019).
26.
go back to reference M. J. Emerson, Y. Wang, P. J. Withers, K. Conradsen, A. B. Dahl, and V. A. Dahl, “Quantifying fibre reorientation during axial compression of a composite through time-lapse X-ray imaging and individual fibre tracking,” Compos. Sci. Technol., 168, Nov., 47-54 (2018).CrossRef M. J. Emerson, Y. Wang, P. J. Withers, K. Conradsen, A. B. Dahl, and V. A. Dahl, “Quantifying fibre reorientation during axial compression of a composite through time-lapse X-ray imaging and individual fibre tracking,” Compos. Sci. Technol., 168, Nov., 47-54 (2018).CrossRef
27.
go back to reference Abaqus 2018 Analysis User’s Guide, Book Abaqus 2018 Analysis User’s Guide, EditorSimulia (2018). Abaqus 2018 Analysis User’s Guide, Book Abaqus 2018 Analysis User’s Guide, EditorSimulia (2018).
28.
go back to reference M. W. Czabaj, M. L. Riccio, and W. W. Whitacre, “Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution X-ray computed tomography,” Compos. Sci. Technol., 105, 174-182 (2014).CrossRef M. W. Czabaj, M. L. Riccio, and W. W. Whitacre, “Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution X-ray computed tomography,” Compos. Sci. Technol., 105, 174-182 (2014).CrossRef
29.
go back to reference S. W. Yurgartis, “Measurement of small angle fiber misalignments in continuous fiber composites,” Compos. Sci. Technol., 30, No. 4, 279-293 (1987).CrossRef S. W. Yurgartis, “Measurement of small angle fiber misalignments in continuous fiber composites,” Compos. Sci. Technol., 30, No. 4, 279-293 (1987).CrossRef
30.
go back to reference B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ando, “Failure behavior of an epoxy matrix under different kinds of static loading,” Compos. Sci. Technol., 61, No. 11, 1615-1624 (2001).CrossRef B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ando, “Failure behavior of an epoxy matrix under different kinds of static loading,” Compos. Sci. Technol., 61, No. 11, 1615-1624 (2001).CrossRef
Metadata
Title
Simulation of Crumpling in Composite Materials via Computational Micromechanics
Authors
N. V. Turbin
R. D. Trifonov
S. S. Kovtunov
Publication date
17-09-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 4/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10045-y

Other articles of this Issue 4/2022

Mechanics of Composite Materials 4/2022 Go to the issue

Premium Partners