Skip to main content
Top
Published in: Acta Mechanica 9/2021

07-07-2021 | Original Paper

Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model

Authors: C. Fang, X. Guo, G. J. Weng, J. H. Li, G. Chen

Published in: Acta Mechanica | Issue 9/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growth and coalescence of microvoids nucleating in the second phase particles are the dominant mechanism of ductile fracture. The ductile fracture process is strongly influenced by the stress state. Based on a triaxiality dependent cohesive zone model, the ductile fracture process of zirconium alloys under different stress states is described in the present study. Under the condition of plane strain, a compact tension analysis configuration is established for hydrided zirconium alloys composed of matrix and hydrides. By comparing our prediction with the results based on the extended finite element method, we can calibrate model parameters and then verify the model. The results show that the presence of hydrides accelerates the crack propagation and decreases the post-peak load level. Moreover, we find that the fracture resistance of zirconium alloys is strongly affected by the length, arrangement, quantity, and spacing of the hydrides. Specifically, for hydrides with the length along the crack propagation path, the increase in their length enhances the peak load and reduces the corresponding boundary displacement. The increase in their quantity reduces the post-peak load level. Besides, the increase in their spacing enhances the boundary displacement corresponding to the sudden load drop. For the ductile fracture of zirconium alloys, these simulation results provide insights into their ability to resist crack propagation.
Literature
1.
go back to reference Mallipudi, V., Valance, S., Bertsch, J.: Meso-scale analysis of the creep behavior of hydrogenated Zircaloy-4. Mech. Mater. 51, 15–28 (2012)CrossRef Mallipudi, V., Valance, S., Bertsch, J.: Meso-scale analysis of the creep behavior of hydrogenated Zircaloy-4. Mech. Mater. 51, 15–28 (2012)CrossRef
2.
go back to reference Guo, D.F., Li, M., Shi, Y.D., Zhang, Z.B., Zhang, H.T., Liu, X.M., Wei, B.N., Zhang, X.Y.: High strength and ductility in multimodal-structured Zr. Mater. Design 34, 275–278 (2012)CrossRef Guo, D.F., Li, M., Shi, Y.D., Zhang, Z.B., Zhang, H.T., Liu, X.M., Wei, B.N., Zhang, X.Y.: High strength and ductility in multimodal-structured Zr. Mater. Design 34, 275–278 (2012)CrossRef
3.
go back to reference Alam, T., Khan, M.K., Pathak, M., Ravi, K., Singh, R., Gupta, S.K.: A review on the clad failure studies. Nucl. Eng. Des. 241(9), 3658–3677 (2011)CrossRef Alam, T., Khan, M.K., Pathak, M., Ravi, K., Singh, R., Gupta, S.K.: A review on the clad failure studies. Nucl. Eng. Des. 241(9), 3658–3677 (2011)CrossRef
4.
go back to reference Xiao, L., Umakoshi, Y., Sun, J.: Biaxial low cycle fatigue properties and dislocation substructures of zircaloy-4 under in-phase and out-of-phase loading. Mater. Sci. Eng. A. 292, 40–48 (2000)CrossRef Xiao, L., Umakoshi, Y., Sun, J.: Biaxial low cycle fatigue properties and dislocation substructures of zircaloy-4 under in-phase and out-of-phase loading. Mater. Sci. Eng. A. 292, 40–48 (2000)CrossRef
5.
go back to reference Sundell, G., Thuvander, M., Andren, H.O.: Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys. Corros. Sci. 102, 490–502 (2016)CrossRef Sundell, G., Thuvander, M., Andren, H.O.: Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys. Corros. Sci. 102, 490–502 (2016)CrossRef
6.
go back to reference Varias, A.G., Massih, A.R.: Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients. J. Nucl. Mater. 279(2–3), 273–285 (2000)CrossRef Varias, A.G., Massih, A.R.: Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients. J. Nucl. Mater. 279(2–3), 273–285 (2000)CrossRef
7.
go back to reference Singh, R.N., Mukherjee, S., Gupta, A., Banerjee, S.: Terminal solid solubility of hydrogen in Zr-alloy pressure tube materials. J. Alloy. Compd. 389(1–2), 102–112 (2005)CrossRef Singh, R.N., Mukherjee, S., Gupta, A., Banerjee, S.: Terminal solid solubility of hydrogen in Zr-alloy pressure tube materials. J. Alloy. Compd. 389(1–2), 102–112 (2005)CrossRef
8.
go back to reference Ghahremaninezhad, A., Ravi-Chandar, K.: Ductile failure behavior of polycrystalline Al 6061–T6. Int. J. Fracture 174(2), 177–202 (2012)CrossRef Ghahremaninezhad, A., Ravi-Chandar, K.: Ductile failure behavior of polycrystalline Al 6061–T6. Int. J. Fracture 174(2), 177–202 (2012)CrossRef
9.
go back to reference Pardoen, T., Brechet, Y.: Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys. Philos. Mag. 84(3–5), 269–297 (2004)CrossRef Pardoen, T., Brechet, Y.: Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys. Philos. Mag. 84(3–5), 269–297 (2004)CrossRef
10.
go back to reference Bao, Y., Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81–98 (2004)CrossRef Bao, Y., Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81–98 (2004)CrossRef
11.
go back to reference Nahshon, K., Hutchinson, J.W.: Modification of the Gurson model for shear failure. Eur. J. Mech. A-Solid 27, 1–17 (2008)MATHCrossRef Nahshon, K., Hutchinson, J.W.: Modification of the Gurson model for shear failure. Eur. J. Mech. A-Solid 27, 1–17 (2008)MATHCrossRef
12.
go back to reference Li, Z., Shi, J., Tang, A.: Investigation on fracture mechanisms of metals under various stress states. Acta Mech. 225(7), 1867–1881 (2014)CrossRef Li, Z., Shi, J., Tang, A.: Investigation on fracture mechanisms of metals under various stress states. Acta Mech. 225(7), 1867–1881 (2014)CrossRef
13.
go back to reference Li, W.C., Liao, F.F., Zhou, T.H., Askes, H.: Ductile fracture of Q460 steel: effects of stress triaxiality and lode angle. J. Constr. Steel. Res. 123, 1–17 (2016)CrossRef Li, W.C., Liao, F.F., Zhou, T.H., Askes, H.: Ductile fracture of Q460 steel: effects of stress triaxiality and lode angle. J. Constr. Steel. Res. 123, 1–17 (2016)CrossRef
14.
go back to reference Wang, L.N., Shi, Y.D., Zhang, Y.L., Bai, Y., Lei, S.: Ductile to brittle fracture of CP titanium with torsion deformation. Mater. Lett. 217, 263–266 (2018)CrossRef Wang, L.N., Shi, Y.D., Zhang, Y.L., Bai, Y., Lei, S.: Ductile to brittle fracture of CP titanium with torsion deformation. Mater. Lett. 217, 263–266 (2018)CrossRef
15.
go back to reference Gao, B., Zhang, G., Guo, T.F., Jiang, C., Guo, X., Tang, S.: Voiding and fracture in high-entropy alloy under multi-axis stress states. Mater. Lett. 237, 220–223 (2019)CrossRef Gao, B., Zhang, G., Guo, T.F., Jiang, C., Guo, X., Tang, S.: Voiding and fracture in high-entropy alloy under multi-axis stress states. Mater. Lett. 237, 220–223 (2019)CrossRef
16.
go back to reference Li, X.C., Su, Y.: A phase-field study of the martensitic detwinning in NiTi shape memory alloys under tension or compression. Acta Mech. 231(4), 1539–1557 (2020)MathSciNetMATHCrossRef Li, X.C., Su, Y.: A phase-field study of the martensitic detwinning in NiTi shape memory alloys under tension or compression. Acta Mech. 231(4), 1539–1557 (2020)MathSciNetMATHCrossRef
17.
go back to reference Xi, S.B., Su, Y.: Phase field study of the microstructural dynamic evolution and mechanical response of NiTi shape memory alloy under mechanical loading. Materials 14(1), 183 (2021)CrossRef Xi, S.B., Su, Y.: Phase field study of the microstructural dynamic evolution and mechanical response of NiTi shape memory alloy under mechanical loading. Materials 14(1), 183 (2021)CrossRef
18.
go back to reference Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth. J. Eng. Mate-T. ASME 99(2), 2–15 (1977)CrossRef Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth. J. Eng. Mate-T. ASME 99(2), 2–15 (1977)CrossRef
19.
go back to reference Needleman, A., Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phy. Solids 35, 151–183 (1987)MATHCrossRef Needleman, A., Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phy. Solids 35, 151–183 (1987)MATHCrossRef
20.
go back to reference Reboul, J., Vadillo, G.: Homogenized Gurson-type behavior equations for strain rate sensitive materials. Acta Mech. 229, 1–20 (2018)MathSciNetMATHCrossRef Reboul, J., Vadillo, G.: Homogenized Gurson-type behavior equations for strain rate sensitive materials. Acta Mech. 229, 1–20 (2018)MathSciNetMATHCrossRef
21.
go back to reference Suman, S., Khan, M.K., Pathak, M., Singh, R.N.: 3D simulation of hydride-assisted crack propagation in zircaloy-4 using XFEM. Int. J. Hydrogen Energ. 42(29), 18668–18673 (2017)CrossRef Suman, S., Khan, M.K., Pathak, M., Singh, R.N.: 3D simulation of hydride-assisted crack propagation in zircaloy-4 using XFEM. Int. J. Hydrogen Energ. 42(29), 18668–18673 (2017)CrossRef
22.
go back to reference Hughes, T., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Method. Appl. M. 194(39–41), 4135–4195 (2005)MathSciNetMATHCrossRef Hughes, T., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Method. Appl. M. 194(39–41), 4135–4195 (2005)MathSciNetMATHCrossRef
23.
go back to reference Nguyen, V.O., Anitescu, C., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis: An overview and computer implementation aspects. Math. Comput. Simulat. 117, 89–116 (2015)MathSciNetMATHCrossRef Nguyen, V.O., Anitescu, C., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis: An overview and computer implementation aspects. Math. Comput. Simulat. 117, 89–116 (2015)MathSciNetMATHCrossRef
24.
go back to reference Song, J.H., Wang, H.W., Belytschko, T.: A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)MATHCrossRef Song, J.H., Wang, H.W., Belytschko, T.: A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)MATHCrossRef
25.
go back to reference Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phy. Solids 8(2), 100–104 (1960)CrossRef Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phy. Solids 8(2), 100–104 (1960)CrossRef
26.
go back to reference Barenblatt, G.I.: The mechanical theory of equilibrium cracks in brittle fracture. Adv. App. Mech. 7, 55–129 (1962)CrossRef Barenblatt, G.I.: The mechanical theory of equilibrium cracks in brittle fracture. Adv. App. Mech. 7, 55–129 (1962)CrossRef
27.
go back to reference Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987)MATHCrossRef Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987)MATHCrossRef
28.
go back to reference Guo, X., Yang, G., Weng, G.J., Lu, J.: Interface effects on the strength and ductility of bimodal nanostructured metals. Acta Mech. 229(8), 3475–3487 (2018)CrossRef Guo, X., Yang, G., Weng, G.J., Lu, J.: Interface effects on the strength and ductility of bimodal nanostructured metals. Acta Mech. 229(8), 3475–3487 (2018)CrossRef
29.
go back to reference Xu, X.P., Needleman, A.: Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sc. 1(2), 111–132 (1993)CrossRef Xu, X.P., Needleman, A.: Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sc. 1(2), 111–132 (1993)CrossRef
30.
go back to reference Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phy. Solids 40(6), 1377–1397 (1992)MATHCrossRef Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phy. Solids 40(6), 1377–1397 (1992)MATHCrossRef
31.
go back to reference Scheider, I., Brocks, W.: The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key. Eng. Mater. 251, 313–318 (2003)CrossRef Scheider, I., Brocks, W.: The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key. Eng. Mater. 251, 313–318 (2003)CrossRef
32.
go back to reference Shen, N., Peng, M.Y., Gu, S.T., Hu, Y.G.: Effects of the progressive damage interphase on the effective bulk behavior of spherical particulate composites. Acta Mech. 232(2), 1–15 (2021)MathSciNetMATHCrossRef Shen, N., Peng, M.Y., Gu, S.T., Hu, Y.G.: Effects of the progressive damage interphase on the effective bulk behavior of spherical particulate composites. Acta Mech. 232(2), 1–15 (2021)MathSciNetMATHCrossRef
33.
go back to reference Siegmund, T., Brocks, W.: Prediction of the work of separation and implications to modeling. Int. J. Fracture 99(1–2), 97–116 (1999)CrossRef Siegmund, T., Brocks, W.: Prediction of the work of separation and implications to modeling. Int. J. Fracture 99(1–2), 97–116 (1999)CrossRef
34.
go back to reference Siegmund, T., Brocks, W.: A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng. Fract. Mech. 67, 139–154 (2000)CrossRef Siegmund, T., Brocks, W.: A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng. Fract. Mech. 67, 139–154 (2000)CrossRef
35.
go back to reference Anvari, M., Scheider, I., Thaulow, C.: Simulation of dynamic ductile growth using strain-rate and triaxiality dependent cohesive elements. Eng. Fract. Mech. 73, 2210–2228 (2006)CrossRef Anvari, M., Scheider, I., Thaulow, C.: Simulation of dynamic ductile growth using strain-rate and triaxiality dependent cohesive elements. Eng. Fract. Mech. 73, 2210–2228 (2006)CrossRef
36.
go back to reference Banerjee, A., Manivasagam, R.: Triaxiality dependent cohesive zone model. Eng. Fract. Mech. 76, 1761–1770 (2009)CrossRef Banerjee, A., Manivasagam, R.: Triaxiality dependent cohesive zone model. Eng. Fract. Mech. 76, 1761–1770 (2009)CrossRef
37.
go back to reference Rashid, F.M., Banerjee, A.: Implementation and validation of a triaxiality dependent cohesive model: experiments and simulations. Int. J. Fracture 181(2), 227–239 (2013)CrossRef Rashid, F.M., Banerjee, A.: Implementation and validation of a triaxiality dependent cohesive model: experiments and simulations. Int. J. Fracture 181(2), 227–239 (2013)CrossRef
38.
go back to reference Rashid, F.M., Banerjee, A.: Simulation of fracture in a low ductility aluminum alloy using a triaxiality dependent cohesive model. Eng. Fract. Mech. 179, 1–12 (2017)CrossRef Rashid, F.M., Banerjee, A.: Simulation of fracture in a low ductility aluminum alloy using a triaxiality dependent cohesive model. Eng. Fract. Mech. 179, 1–12 (2017)CrossRef
39.
go back to reference Scheider, I., Rajendran, M., Banerjee, A.: Comparison of different stress-state dependent cohesive zone models applied to thin-walled structures. Eng. Fract. Mech. 78(3), 534–543 (2011)CrossRef Scheider, I., Rajendran, M., Banerjee, A.: Comparison of different stress-state dependent cohesive zone models applied to thin-walled structures. Eng. Fract. Mech. 78(3), 534–543 (2011)CrossRef
40.
go back to reference Liong, R.T., Proppe, C.: Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack. J. Sound Vib. 332(8), 2098–2110 (2013)CrossRef Liong, R.T., Proppe, C.: Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack. J. Sound Vib. 332(8), 2098–2110 (2013)CrossRef
41.
go back to reference Pineau, A., Benzerga, A.A., Pardoen, T.: Failure of metals I: Brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)CrossRef Pineau, A., Benzerga, A.A., Pardoen, T.: Failure of metals I: Brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)CrossRef
42.
go back to reference Rahnama, H., Salehi, D., Taheri-Behrooz, F.: Centrosymmetric equilibrium of nested spherical inhomogeneities in first strain gradient elasticity. Acta Mech. 231(4), 1377–1402 (2020)MathSciNetMATHCrossRef Rahnama, H., Salehi, D., Taheri-Behrooz, F.: Centrosymmetric equilibrium of nested spherical inhomogeneities in first strain gradient elasticity. Acta Mech. 231(4), 1377–1402 (2020)MathSciNetMATHCrossRef
43.
go back to reference Pshenichnikov, A., Stuckert, J., Walter, M.: Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions. Nucl. Eng. Des. 283, 33–39 (2015)CrossRef Pshenichnikov, A., Stuckert, J., Walter, M.: Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions. Nucl. Eng. Des. 283, 33–39 (2015)CrossRef
44.
go back to reference Kim, J.S., Kim, T.H., Kook, D.H., Kim, Y.S.: Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding. J. Nucl. Mater. 456, 235–245 (2015)CrossRef Kim, J.S., Kim, T.H., Kook, D.H., Kim, Y.S.: Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding. J. Nucl. Mater. 456, 235–245 (2015)CrossRef
45.
go back to reference Chen, W., Kou, H., Chen, L., Wang, F., Zeng, X.G.: Theory model combined with XFEM of threshold stress intensity factor and critical hydride length for delay hydride cracking. Int. J. Hydrogen Energ. 44(54), 29047–29056 (2019)CrossRef Chen, W., Kou, H., Chen, L., Wang, F., Zeng, X.G.: Theory model combined with XFEM of threshold stress intensity factor and critical hydride length for delay hydride cracking. Int. J. Hydrogen Energ. 44(54), 29047–29056 (2019)CrossRef
46.
go back to reference Tseng, C.C., Sun, M.H., Chao, C.K.: Hydride effect on crack instability of Zircaloy cladding. Nucl. Eng. Des. 270, 427–435 (2014)CrossRef Tseng, C.C., Sun, M.H., Chao, C.K.: Hydride effect on crack instability of Zircaloy cladding. Nucl. Eng. Des. 270, 427–435 (2014)CrossRef
47.
go back to reference Cheng, H., Chen, G., Zhang, Z., Chen, X.: Uniaxial ratcheting behaviors of Zircaloy-4 tubes at 400 °C. J. Nucl. Mater. 458, 129–137 (2015)CrossRef Cheng, H., Chen, G., Zhang, Z., Chen, X.: Uniaxial ratcheting behaviors of Zircaloy-4 tubes at 400 °C. J. Nucl. Mater. 458, 129–137 (2015)CrossRef
48.
go back to reference ABAQUS User’s Manual. USA: ABAQUS User’s manual, version 6.11; 2011. ABAQUS User’s Manual. USA: ABAQUS User’s manual, version 6.11; 2011.
49.
go back to reference Brocks, W., Scheider, I., Schödel, M.: Simulation of crack extension in shell structures and prediction of residual strength. Arch. Appl. Mech. 76(11–12), 655–665 (2006)MATHCrossRef Brocks, W., Scheider, I., Schödel, M.: Simulation of crack extension in shell structures and prediction of residual strength. Arch. Appl. Mech. 76(11–12), 655–665 (2006)MATHCrossRef
50.
go back to reference Xu, J., Shi, S.Q.: Investigation of mechanical properties of ε-zirconium hydride using micro- and nano-indentation techniques. J. Nucl. Mater. 327(2), 165–170 (2004)CrossRef Xu, J., Shi, S.Q.: Investigation of mechanical properties of ε-zirconium hydride using micro- and nano-indentation techniques. J. Nucl. Mater. 327(2), 165–170 (2004)CrossRef
51.
go back to reference Wen, M.J., Li, H., Yu, D.J., Chen, G., Chen, X.: Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature. Mater. Design 46, 426–434 (2013)CrossRef Wen, M.J., Li, H., Yu, D.J., Chen, G., Chen, X.: Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature. Mater. Design 46, 426–434 (2013)CrossRef
52.
go back to reference Zhang, J.Y., Zhu, J.C., Ding, S.R., Chen, L., Li, W.J., Pang, H.: Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses. Nucl. Eng. Technol. 50(7), 1138–1147 (2018)CrossRef Zhang, J.Y., Zhu, J.C., Ding, S.R., Chen, L., Li, W.J., Pang, H.: Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses. Nucl. Eng. Technol. 50(7), 1138–1147 (2018)CrossRef
53.
go back to reference Daum, R.S., Majumdar, S., Liu, Y.Y., Billone, M.C.: Radial-hydride embrittlement of high-burnup Zircaloy-4 fuel cladding. J. Nucl. Sci. Technol. 43(9), 1054–1067 (2006)CrossRef Daum, R.S., Majumdar, S., Liu, Y.Y., Billone, M.C.: Radial-hydride embrittlement of high-burnup Zircaloy-4 fuel cladding. J. Nucl. Sci. Technol. 43(9), 1054–1067 (2006)CrossRef
54.
go back to reference Hsu, H.H., Tsay, L.W.: Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding. J. Nucl. Mater. 408(1), 67–72 (2011)CrossRef Hsu, H.H., Tsay, L.W.: Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding. J. Nucl. Mater. 408(1), 67–72 (2011)CrossRef
Metadata
Title
Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model
Authors
C. Fang
X. Guo
G. J. Weng
J. H. Li
G. Chen
Publication date
07-07-2021
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 9/2021
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-03032-2

Other articles of this Issue 9/2021

Acta Mechanica 9/2021 Go to the issue

Premium Partners