Skip to main content
Top
Published in: Metal Science and Heat Treatment 11-12/2018

13-04-2018

Simulation of the Temperature, Microstructure and Mechanical Properties of Cold-Rolled Stainless Steel Sus430 During Continuous Annealing

Authors: Xiong Zhang, Zhi Wen

Published in: Metal Science and Heat Treatment | Issue 11-12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mathematical models of variation of the temperature, microstructure and mechanical properties of cold-rolled steel SUS340 in a continuous annealing furnace are derived using experimental results and numerical methods. The results obtained are used for computing the mechanical properties of SUS340 under continuous annealing and for developing new annealing modes with the help of the model suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Yan, Stainless Steel: Handbook, Chemical Industry Press, Beijing (2009), p. 30. B. Yan, Stainless Steel: Handbook, Chemical Industry Press, Beijing (2009), p. 30.
2.
go back to reference F. J. Humpgrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford Press, London (2004), p. 2. F. J. Humpgrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford Press, London (2004), p. 2.
3.
go back to reference C. Herrera, N. B. Lima, and A. F. Filho, “Texture and mechanical properties evolution of a deep drawing medium carbon steel during cold rolling and subsequent recrystallization,” J. Mater. Proc. Tech., 209, 3524 (2009).CrossRef C. Herrera, N. B. Lima, and A. F. Filho, “Texture and mechanical properties evolution of a deep drawing medium carbon steel during cold rolling and subsequent recrystallization,” J. Mater. Proc. Tech., 209, 3524 (2009).CrossRef
4.
go back to reference B. C.Wu, F. Shi, and X. Y. Cheng, “Effects of annealing temperature on microstructure, property and texture of 08Al coldrolled sheet,” Trans. Mater. Heat Treat. [in Chinese], 32(12), 61 (2011). B. C.Wu, F. Shi, and X. Y. Cheng, “Effects of annealing temperature on microstructure, property and texture of 08Al coldrolled sheet,” Trans. Mater. Heat Treat. [in Chinese], 32(12), 61 (2011).
5.
go back to reference D. X. Su, W. C. Xu, and H. P. Li, “Influence factors analysis on the measurement of the plastic strain ratio r value of metallic sheets,” Part A Phys. Test [in Chinese], 42(3), 113 (2006). D. X. Su, W. C. Xu, and H. P. Li, “Influence factors analysis on the measurement of the plastic strain ratio r value of metallic sheets,” Part A Phys. Test [in Chinese], 42(3), 113 (2006).
6.
go back to reference A. Belyakov and Y. Kimura, “Recovery and recrystallization in ferritic stainless steels after large strain deformation,” Mater. Sci. Eng. A, 403, 249 (2005).CrossRef A. Belyakov and Y. Kimura, “Recovery and recrystallization in ferritic stainless steels after large strain deformation,” Mater. Sci. Eng. A, 403, 249 (2005).CrossRef
7.
go back to reference L. Yaping, A. D. Molodov, and G. Gunter, “Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe – Mn – C alloy,” Acta Mater., 59, 3229 (2011).CrossRef L. Yaping, A. D. Molodov, and G. Gunter, “Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe – Mn – C alloy,” Acta Mater., 59, 3229 (2011).CrossRef
8.
go back to reference W. P. Ye, R. L. Gall, and G. Saindrenan, “A study of the recrystallization of an IF steel by kinetics models,” Mater. Sci. Eng. A, 332, 41 (2002).CrossRef W. P. Ye, R. L. Gall, and G. Saindrenan, “A study of the recrystallization of an IF steel by kinetics models,” Mater. Sci. Eng. A, 332, 41 (2002).CrossRef
9.
go back to reference R. F. Dou, Z. Wen, and Q. Li, “Mathematical model based furnace temperature optimization strategy for continuous annealing furnace,” J. Zhejiang Univ. [in Chinese], 41(10), 1735 (2007). R. F. Dou, Z. Wen, and Q. Li, “Mathematical model based furnace temperature optimization strategy for continuous annealing furnace,” J. Zhejiang Univ. [in Chinese], 41(10), 1735 (2007).
10.
go back to reference S. Strommer, M. Niederer, and A. Ssteinboeck, “A mathematical model of a direct-fired continuous strip annealing furnace,” Int. J. Heat Mass Trans., 69, 375 (2014).CrossRef S. Strommer, M. Niederer, and A. Ssteinboeck, “A mathematical model of a direct-fired continuous strip annealing furnace,” Int. J. Heat Mass Trans., 69, 375 (2014).CrossRef
11.
go back to reference C. G. Spinola, J. M. Canero-Nieto, and C. J. Galvez-Fernandez, “Real-time supervision of annealing process in stainless steel production lines,” J. Metall. Eng., 3(1), 1 (2014). C. G. Spinola, J. M. Canero-Nieto, and C. J. Galvez-Fernandez, “Real-time supervision of annealing process in stainless steel production lines,” J. Metall. Eng., 3(1), 1 (2014).
12.
go back to reference V. I. Lebedev and V. A. Sokolov, “Study of the convection components of complex heat exchange in a model of a direct-heating furnace,” Glass Ceram., 33, 352 (1976).CrossRef V. I. Lebedev and V. A. Sokolov, “Study of the convection components of complex heat exchange in a model of a direct-heating furnace,” Glass Ceram., 33, 352 (1976).CrossRef
13.
go back to reference R. F. Dou and Z. Wen, Mathematical Model Based Furnace Temperature Optimization Strategy for Continuous Annealing Furnace, Metall. Industry Press, Beijing (2014), p. 120. R. F. Dou and Z. Wen, Mathematical Model Based Furnace Temperature Optimization Strategy for Continuous Annealing Furnace, Metall. Industry Press, Beijing (2014), p. 120.
14.
go back to reference M. Holger, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces: Advances in Heat Transfer, Academic Press, New York (1977), p. 40. M. Holger, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces: Advances in Heat Transfer, Academic Press, New York (1977), p. 40.
15.
go back to reference Z. Li, T. S. Wang, and X. J. Zhang, “Annealing softening behavior of cold-rolled low-carbon steel with a dual-phase structure and the resulting tensile properties,” Mater. Sci. Eng. A, 552, 204 (2012).CrossRef Z. Li, T. S. Wang, and X. J. Zhang, “Annealing softening behavior of cold-rolled low-carbon steel with a dual-phase structure and the resulting tensile properties,” Mater. Sci. Eng. A, 552, 204 (2012).CrossRef
16.
go back to reference L. Brake, K. Verbeken, and L. Kestens, “Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel,” Acta Mater., 57, 1512 (2009).CrossRef L. Brake, K. Verbeken, and L. Kestens, “Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel,” Acta Mater., 57, 1512 (2009).CrossRef
17.
go back to reference C. M. Sellars, “Modeling microstructural development during hot rolling,” Mater. Sci. Tech., 6, 1072 (1990).CrossRef C. M. Sellars, “Modeling microstructural development during hot rolling,” Mater. Sci. Tech., 6, 1072 (1990).CrossRef
18.
go back to reference X. Zhang, Z. Wen, et al., “Evolution of microstructure and mechanical properties of cold-rolled SUS430 stainless steel during a continuous annealing process,” Mater. Sci. Eng. A, 598, 22 (2014).CrossRef X. Zhang, Z. Wen, et al., “Evolution of microstructure and mechanical properties of cold-rolled SUS430 stainless steel during a continuous annealing process,” Mater. Sci. Eng. A, 598, 22 (2014).CrossRef
19.
go back to reference B. Pereda and J. M. Rodriguez, “Improved model of kinetics of strain induced precipitation and microstructure evolution of nbmicroalloyed steels during multipass rolling,” ISIJ Int., 48(7), 1457 (2008).CrossRef B. Pereda and J. M. Rodriguez, “Improved model of kinetics of strain induced precipitation and microstructure evolution of nbmicroalloyed steels during multipass rolling,” ISIJ Int., 48(7), 1457 (2008).CrossRef
20.
go back to reference U. Rintaro, T. Nobuhiro, and M. Yoritoshi, “Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure,” Sci. Technol. Adv. Mater., 5, 153 (2004).CrossRef U. Rintaro, T. Nobuhiro, and M. Yoritoshi, “Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure,” Sci. Technol. Adv. Mater., 5, 153 (2004).CrossRef
Metadata
Title
Simulation of the Temperature, Microstructure and Mechanical Properties of Cold-Rolled Stainless Steel Sus430 During Continuous Annealing
Authors
Xiong Zhang
Zhi Wen
Publication date
13-04-2018
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 11-12/2018
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0230-5

Other articles of this Issue 11-12/2018

Metal Science and Heat Treatment 11-12/2018 Go to the issue

Premium Partners