Skip to main content
Top

2013 | OriginalPaper | Chapter

11. Simulation/Regression Pricing Schemes in Pure Jump Setups

Author : Prof. Stéphane Crépey

Published in: Financial Modeling

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we devise simulation/regression numerical schemes in pure jump models. There the idea is to perform the nonlinear regressions, used for computing conditional expectations, in the time variable for a given state of the model rather than in the space variables at a given time in the diffusive setups of Chap. 10. This idea is stated in the form of a generic lemma that is valid in any continuous-time Markov chain model. This is then tested in the context of two credit risk applications, the first of which values the sensitivities of a CDO tranche in a homogeneous groups model of portfolio credit risk by Monte Carlo without resimulation. The second computes by Monte Carlo the CVA on a CDO tranche in a common shock model of counterparty credit risk. CVA stands for credit valuation adjustment, the correction in value to a derivative accounting for the default risk of your counterparty, a topical issue since the crisis. But wait: are you perfect yourself? Isn’t it so that most Western banks nowadays quote at a few hundreds of basis points of credit spread? This means that you should also account for your own default risk in the valuation, otherwise I doubt many clients would agree to deal with you—which implies the related nonlinear funding struggle that if you are credit risky, the funding of your position will involve (at least) two rates, a lending and a borrowing one. Now, quiz to the reader (not answered in this chapter, and in fact nowhere else either): how would you price nonlinear funding costs on a very high-dimensional and discrete underlying like a CDO tranche?

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In a càdlàg version, as always by default throughout this book.
 
2
Though endowed with a specific bias as explained above.
 
3
However, as demonstrated in this chapter, the practical side of this can ultimately only be, to a large extent, experimental.
 
Literature
8.
go back to reference Assefa, S., Bielecki, T., Crépey, S., & Jeanblanc, M. (2011). CVA computation for counterparty risk assessment in credit portfolios. In T. Bielecki, D. Brigo, & F. Patras (Eds.), Credit risk frontiers (pp. 397–436). New York: Wiley. Assefa, S., Bielecki, T., Crépey, S., & Jeanblanc, M. (2011). CVA computation for counterparty risk assessment in credit portfolios. In T. Bielecki, D. Brigo, & F. Patras (Eds.), Credit risk frontiers (pp. 397–436). New York: Wiley.
30.
go back to reference Bielecki, T., Brigo, D., & Crépey, S. (2013). Counterparty risk modeling—collateralization, funding and hedging. Taylor & Francis (in preparation). Bielecki, T., Brigo, D., & Crépey, S. (2013). Counterparty risk modeling—collateralization, funding and hedging. Taylor & Francis (in preparation).
31.
go back to reference Bielecki, T. R., Cousin, A., Crépey, S., & Herbertsson, A. (2012). Dynamic hedging of portfolio credit risk in a Markov copula model. Journal of Optimization Theory and Applications (doi:10.1007/s10957-013-0318-4, forthcoming). Bielecki, T. R., Cousin, A., Crépey, S., & Herbertsson, A. (2012). Dynamic hedging of portfolio credit risk in a Markov copula model. Journal of Optimization Theory and Applications (doi:10.​1007/​s10957-013-0318-4, forthcoming).
32.
go back to reference Bielecki, T. R., Cousin, A., Crépey, S., & Herbertsson, A. (2012). A bottom-up dynamic model of portfolio credit risk with stochastic intensities and random recoveries. Communications in Statistics—Theory and Methods (in revision). Bielecki, T. R., Cousin, A., Crépey, S., & Herbertsson, A. (2012). A bottom-up dynamic model of portfolio credit risk with stochastic intensities and random recoveries. Communications in Statistics—Theory and Methods (in revision).
33.
go back to reference Bielecki, T., & Crépey, S. (2011). Dynamic hedging of counterparty exposure. In T. Zariphopoulou, M. Rutkowski, & Y. Kabanov (Eds.), The Musiela Festschrift. Berlin: Springer (forthcoming). Bielecki, T., & Crépey, S. (2011). Dynamic hedging of counterparty exposure. In T. Zariphopoulou, M. Rutkowski, & Y. Kabanov (Eds.), The Musiela Festschrift. Berlin: Springer (forthcoming).
34.
go back to reference Bielecki, T., Crépey, S., & Herbertsson, A. (2011). Markov chain models of portfolio credit risk. In A. Lipton & A. Rennie (Eds.), Oxford handbooks in finance. Oxford handbook of credit derivatives (pp. 327–382). Bielecki, T., Crépey, S., & Herbertsson, A. (2011). Markov chain models of portfolio credit risk. In A. Lipton & A. Rennie (Eds.), Oxford handbooks in finance. Oxford handbook of credit derivatives (pp. 327–382).
35.
41.
go back to reference Bielecki, T. R., Jakubowskib, J., & Nieweglowskic, M. (2012). Study of dependence for some stochastic processes: symbolic Markov copulae. Stochastic Processes and Their Applications, 122(3), 930–951. MathSciNetMATHCrossRef Bielecki, T. R., Jakubowskib, J., & Nieweglowskic, M. (2012). Study of dependence for some stochastic processes: symbolic Markov copulae. Stochastic Processes and Their Applications, 122(3), 930–951. MathSciNetMATHCrossRef
42.
go back to reference Bielecki, T. R., Jakubowski, J., Vidozzi, A., & Vidozzi, L. (2008). Study of dependence for some stochastic processes. Stochastic Analysis and Applications, 26(4), 903–924. MathSciNetMATHCrossRef Bielecki, T. R., Jakubowski, J., Vidozzi, A., & Vidozzi, L. (2008). Study of dependence for some stochastic processes. Stochastic Analysis and Applications, 26(4), 903–924. MathSciNetMATHCrossRef
45.
go back to reference Bielecki, T. R., Vidozzi, A., & Vidozzi, L. (2008). A Markov copulae approach to pricing and hedging of credit index derivatives and ratings triggered step-up bonds. The Journal of Credit Risk, 4(1), 47–76. Bielecki, T. R., Vidozzi, A., & Vidozzi, L. (2008). A Markov copulae approach to pricing and hedging of credit index derivatives and ratings triggered step-up bonds. The Journal of Credit Risk, 4(1), 47–76.
59.
go back to reference Brigo, D., Morini, M., & Pallavicini, A. (2013). Counterparty credit risk, collateral and funding with pricing cases for all asset classes. New York: Wiley. Brigo, D., Morini, M., & Pallavicini, A. (2013). Counterparty credit risk, collateral and funding with pricing cases for all asset classes. New York: Wiley.
61.
go back to reference Carmona, R., & Crépey, S. (2010). Importance sampling and interacting particle systems for the estimation of Markovian credit portfolios loss distribution. International Journal of Theoretical and Applied Finance, 13(4), 577–602. MathSciNetMATHCrossRef Carmona, R., & Crépey, S. (2010). Importance sampling and interacting particle systems for the estimation of Markovian credit portfolios loss distribution. International Journal of Theoretical and Applied Finance, 13(4), 577–602. MathSciNetMATHCrossRef
63.
go back to reference Cesari, G., Aquilina, J., Charpillon, N., Filipovic, Z., Lee, G., & Manda, I. (2010). Modelling, pricing, and hedging counterparty credit exposure. Berlin: Springer. Cesari, G., Aquilina, J., Charpillon, N., Filipovic, Z., Lee, G., & Manda, I. (2010). Modelling, pricing, and hedging counterparty credit exposure. Berlin: Springer.
80.
go back to reference Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part I: Pricing. Mathematical Finance (online December 2012, doi:10.1111/mafi.12004). Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part I: Pricing. Mathematical Finance (online December 2012, doi:10.​1111/​mafi.​12004).
81.
go back to reference Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part II: CVA. Mathematical Finance (online December 2012, doi:10.1111/mafi.12005). Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part II: CVA. Mathematical Finance (online December 2012, doi:10.​1111/​mafi.​12005).
82.
go back to reference Crépey, S. (2013). Wrong way and gap risks modeling: a marked default time approach (in preparation). Crépey, S. (2013). Wrong way and gap risks modeling: a marked default time approach (in preparation).
86.
go back to reference Crépey, S., Jeanblanc, M., & Zargari, B. (2010). Counterparty risk on a CDS in a Markov chain copula model with joint defaults. In M. Kijima, C. Hara, Y. Muromachi, & K. Tanaka (Eds.), Recent advances in financial engineering 2009 (pp. 91–126). Singapore: World Scientific. Crépey, S., Jeanblanc, M., & Zargari, B. (2010). Counterparty risk on a CDS in a Markov chain copula model with joint defaults. In M. Kijima, C. Hara, Y. Muromachi, & K. Tanaka (Eds.), Recent advances in financial engineering 2009 (pp. 91–126). Singapore: World Scientific.
127.
go back to reference Frey, R., & Backhaus, J. (2010). Dynamic hedging of synthetic CDO tranches with spread and contagion risk. Journal of Economic Dynamics & Control, 34(4), 710–724. MathSciNetMATHCrossRef Frey, R., & Backhaus, J. (2010). Dynamic hedging of synthetic CDO tranches with spread and contagion risk. Journal of Economic Dynamics & Control, 34(4), 710–724. MathSciNetMATHCrossRef
128.
go back to reference Frey, R., & Backhaus, J. (2008). Pricing and hedging of portfolio credit derivatives with interacting default intensities. International Journal of Theoretical and Applied Finance, 11(6), 611–634. MathSciNetMATHCrossRef Frey, R., & Backhaus, J. (2008). Pricing and hedging of portfolio credit derivatives with interacting default intensities. International Journal of Theoretical and Applied Finance, 11(6), 611–634. MathSciNetMATHCrossRef
143.
go back to reference Herbertsson, A., & Rootzén, H. (2008). Pricing kth-to-default swaps under default contagion: the matrix-analytic approach. Journal of Computational Finance, 12(1), 49–78. MathSciNet Herbertsson, A., & Rootzén, H. (2008). Pricing kth-to-default swaps under default contagion: the matrix-analytic approach. Journal of Computational Finance, 12(1), 49–78. MathSciNet
178.
go back to reference Laurent, J.-P., Cousin, A., & Fermanian, J.-D. (2011). Hedging default risks of CDOs in Markovian contagion models. Quantitative Finance, 11(12), 1773–1791. MathSciNetCrossRef Laurent, J.-P., Cousin, A., & Fermanian, J.-D. (2011). Hedging default risks of CDOs in Markovian contagion models. Quantitative Finance, 11(12), 1773–1791. MathSciNetCrossRef
199.
go back to reference Marshall, A., & Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association, 2, 84–98. MathSciNet Marshall, A., & Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association, 2, 84–98. MathSciNet
216.
go back to reference Pallavicini, A., Perini, D., & Brigo, D. (2011). Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation (working paper). Pallavicini, A., Perini, D., & Brigo, D. (2011). Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation (working paper).
Metadata
Title
Simulation/Regression Pricing Schemes in Pure Jump Setups
Author
Prof. Stéphane Crépey
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37113-4_11

Premium Partner