Skip to main content
Top

2013 | OriginalPaper | Chapter

12. Backward Stochastic Differential Equations

Author : Prof. Stéphane Crépey

Published in: Financial Modeling

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We saw in Chap. 4 that the problem of pricing and hedging financial derivatives can be modeled in terms of (possibly reflected) backward stochastic differential equations (BSDEs) or, equivalently in the Markovian setup, by partial integro-differential equations or variational inequalities (PIDEs or PDEs for short). Also, Chaps. 10 and 11 just provided thorough illustrations of the abilities of simulation/regression numerical schemes for solving high-dimensional pricing equations: very large systems of partial differential equations in Chap. 10 and Markov chain related systems of ODEs in Chap. 11.
Now that we experimented the power of the theory, let’s dig into it. The next few chapters provides a thorough mathematical treatment of the BSDEs and PDEs that are of fundamental importance for our approach. More precisely, Chaps. 12 to 14 develop, within a rigorous mathematical framework, the connection between backward stochastic differential equations and partial differential equations. This is done in a jump-diffusion setting with regime switching, which covers all the models considered in the book. To start with, Chap. 12 establishes the well-posedness of a Markovian reflected BSDE in a rather generic jump-diffusion model with regime switching, denoted by (X,N), which covers all the models considered in this book. In standard applications, the main component of the model, in which the payoffs of a derivative are expressed, is X. The other model component N can be used to represent a pricing regime, which may also be viewed as a degenerate form of stochastic volatility. More standard diffusive forms of stochastic volatility may also be accounted for in X. The presence of jumps in X is motivated by the empirical evidence of the short-term volatility smile in the market. In credit and counterparty risk modeling, the main model component (the one which drives the cash flows) is the Markov-chain-like-component N, representing a vector of default status and/or credit ratings of reference obligors; a jump-diffusion-like-component X can be used to represent the evolution of economic variables modulating the dynamics of N. Frailty and default contagion are accounted for by the coupled interaction between N and X.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Typically finite or Euclidean.
 
2
See Sect. 4.​1.
 
3
Or Hilbert spaces, in the cases of L 2, \(\mathcal{H}^{2}_{d}\) or \(\mathcal{H}_{\mu}^{2}\).
 
4
See Definition 4.1.12.
 
5
The notation R2BSDE refers to the fact that there are two barriers involved; it has nothing to do with any notion of second-order BSDEs such as in [247].
 
6
The “D” in RDBSDE stands for “delayed”.
 
7
Boolean-valued processes.
 
8
Recalling \(\theta \in\mathcal {T}_{\vartheta }\), so that θϑ and \(\overline{U}_{\theta }=U_{\theta }\).
 
9
Simply reflected BSDEs can be treated without quasimartingale conditions; see [112].
 
10
Strictly speaking, the operator \({{\mathcal{G}}}\) is the generator of the time-extended process \((t,\mathcal{X}_{t})\).
 
11
Note that the initial time is t here instead of 0 in Sect. 12.1. Superscripts t are thus added, where needed, to the notation of Sect. 12.1.
 
12
Recall our notational conventions such as “g i (t,x,…)≡g(t,x,i,…)”.
 
13
A discrete sum in the case of w.
 
14
Except for slightly more general RIBSDEs to be introduced of Sect. 14.​2.
 
15
See Theorem 5 on p. 25 of Brémaud [56].
 
16
See e.g. Jeanblanc et al. [159].
 
17
See (12.27) for the definition of \(|\widetilde{v} - \widetilde {v}^{\prime}|^{t}_{s}\).
 
18
Recall (12.28) and (12.68) for the definitions of \(\widetilde{g}\) and \(\widehat {g}\).
 
19
Otherwise more general but less constructive representations can be given in terms of Malliavin calculus [96, 214].
 
Literature
2.
go back to reference Albanese, C., Campolieti, G., Carr, P., & Lipton, A. (2001). Black–Scholes goes hypergeometric. Risk, December 2001, 99–103. Albanese, C., Campolieti, G., Carr, P., & Lipton, A. (2001). Black–Scholes goes hypergeometric. Risk, December 2001, 99–103.
20.
go back to reference Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83. MathSciNetMATHCrossRef Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83. MathSciNetMATHCrossRef
25.
go back to reference Becherer, D., & Schweizer, M. (2005). Classical solutions to reaction–diffusion systems for hedging with interacting Itô and point processes. The Annals of Applied Probability, 15, 1111–1144. MathSciNetMATHCrossRef Becherer, D., & Schweizer, M. (2005). Classical solutions to reaction–diffusion systems for hedging with interacting Itô and point processes. The Annals of Applied Probability, 15, 1111–1144. MathSciNetMATHCrossRef
30.
go back to reference Bielecki, T., Brigo, D., & Crépey, S. (2013). Counterparty risk modeling—collateralization, funding and hedging. Taylor & Francis (in preparation). Bielecki, T., Brigo, D., & Crépey, S. (2013). Counterparty risk modeling—collateralization, funding and hedging. Taylor & Francis (in preparation).
36.
go back to reference Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2007). Valuation of basket credit derivatives in the credit migrations environment. In J. Birge & V. Linetsky (Eds.), Handbook of financial engineering. Amsterdam: Elsevier. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2007). Valuation of basket credit derivatives in the credit migrations environment. In J. Birge & V. Linetsky (Eds.), Handbook of financial engineering. Amsterdam: Elsevier.
42.
go back to reference Bielecki, T. R., Jakubowski, J., Vidozzi, A., & Vidozzi, L. (2008). Study of dependence for some stochastic processes. Stochastic Analysis and Applications, 26(4), 903–924. MathSciNetMATHCrossRef Bielecki, T. R., Jakubowski, J., Vidozzi, A., & Vidozzi, L. (2008). Study of dependence for some stochastic processes. Stochastic Analysis and Applications, 26(4), 903–924. MathSciNetMATHCrossRef
48.
go back to reference Boel, R., Varaiya, P., & Wong, E. (1975). Martingales on jump processes: I Representation results. SIAM Journal on Control and Optimization, 13(5), 999–1021. MathSciNetMATHCrossRef Boel, R., Varaiya, P., & Wong, E. (1975). Martingales on jump processes: I Representation results. SIAM Journal on Control and Optimization, 13(5), 999–1021. MathSciNetMATHCrossRef
49.
go back to reference Boel, R., Varaiya, P., & Wong, E. (1975). Martingales on jump processes: II Applications. SIAM Journal on Control and Optimization, 13(5), 1022–1061. MathSciNetMATHCrossRef Boel, R., Varaiya, P., & Wong, E. (1975). Martingales on jump processes: II Applications. SIAM Journal on Control and Optimization, 13(5), 1022–1061. MathSciNetMATHCrossRef
56.
65.
go back to reference Chassagneux, J.-F., & Crépey, S. (2012). Doubly reflected BSDEs with call protection and their approximation. ESAIM: Probability and Statistics (in revision). Chassagneux, J.-F., & Crépey, S. (2012). Doubly reflected BSDEs with call protection and their approximation. ESAIM: Probability and Statistics (in revision).
80.
go back to reference Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part I: Pricing. Mathematical Finance (online December 2012, doi:10.1111/mafi.12004). Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part I: Pricing. Mathematical Finance (online December 2012, doi:10.​1111/​mafi.​12004).
81.
go back to reference Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part II: CVA. Mathematical Finance (online December 2012, doi:10.1111/mafi.12005). Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part II: CVA. Mathematical Finance (online December 2012, doi:10.​1111/​mafi.​12005).
87.
go back to reference Crépey, S., & Matoussi, A. (2008). Reflected and doubly reflected BSDEs with jumps: a priori estimates and comparison principle. The Annals of Applied Probability, 18(5), 2041–2069. MathSciNetMATHCrossRef Crépey, S., & Matoussi, A. (2008). Reflected and doubly reflected BSDEs with jumps: a priori estimates and comparison principle. The Annals of Applied Probability, 18(5), 2041–2069. MathSciNetMATHCrossRef
90.
go back to reference Cvitanic, J., & Karatzas, I. (1996). Backward stochastic differential equations with reflection and Dynkin games. Annals of Probability, 24(4), 2024–2056. MathSciNetMATHCrossRef Cvitanic, J., & Karatzas, I. (1996). Backward stochastic differential equations with reflection and Dynkin games. Annals of Probability, 24(4), 2024–2056. MathSciNetMATHCrossRef
91.
go back to reference Darling, R., & Pardoux, E. (1997). Backward SDE with random terminal time and applications to semilinear elliptic PDE. Annals of Probability, 25, 1135–1159. MathSciNetMATHCrossRef Darling, R., & Pardoux, E. (1997). Backward SDE with random terminal time and applications to semilinear elliptic PDE. Annals of Probability, 25, 1135–1159. MathSciNetMATHCrossRef
95.
go back to reference Dellacherie, C., & Meyer, P.-A. (1982). Probabilities and potential. Amsterdam: North-Holland. MATH Dellacherie, C., & Meyer, P.-A. (1982). Probabilities and potential. Amsterdam: North-Holland. MATH
96.
go back to reference Delong, L. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications. Springer (forthcoming in the EAA Series). Delong, L. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications. Springer (forthcoming in the EAA Series).
106.
112.
go back to reference El Karoui, N., Kapoudjian, E., Pardoux, C., Peng, S., & Quenez, M.-C. (1997). Reflected solutions of backward SDEs, and related obstacle problems for PDEs. Annals of Probability, 25, 702–737. MathSciNetMATHCrossRef El Karoui, N., Kapoudjian, E., Pardoux, C., Peng, S., & Quenez, M.-C. (1997). Reflected solutions of backward SDEs, and related obstacle problems for PDEs. Annals of Probability, 25, 702–737. MathSciNetMATHCrossRef
114.
go back to reference El Karoui, N., Peng, S., & Quenez, M.-C. (1997). Backward stochastic differential equations in finance. Mathematical Finance, 7, 1–71. MathSciNetMATHCrossRef El Karoui, N., Peng, S., & Quenez, M.-C. (1997). Backward stochastic differential equations in finance. Mathematical Finance, 7, 1–71. MathSciNetMATHCrossRef
119.
go back to reference Ethier, H., & Kurtz, T. (1986). Markov processes. Characterization and convergence. New York: Wiley-Interscience. MATHCrossRef Ethier, H., & Kurtz, T. (1986). Markov processes. Characterization and convergence. New York: Wiley-Interscience. MATHCrossRef
126.
go back to reference Freidlin, M. (1996). Markov processes and differential equations: asymptotic problems. Basel: Birkhäuser. MATHCrossRef Freidlin, M. (1996). Markov processes and differential equations: asymptotic problems. Basel: Birkhäuser. MATHCrossRef
139.
go back to reference Hamadène, S., & Hassani, M. (2006). BSDEs with two reflecting barriers driven by a Brownian motion and an independent Poisson noise and related Dynkin game. Electronic Journal of Probability, 11, 121–145. MathSciNetCrossRef Hamadène, S., & Hassani, M. (2006). BSDEs with two reflecting barriers driven by a Brownian motion and an independent Poisson noise and related Dynkin game. Electronic Journal of Probability, 11, 121–145. MathSciNetCrossRef
140.
go back to reference Hamadène, S., & Ouknine, Y. (2003). Reflected backward stochastic differential equation with jumps and random obstacle. Electronic Journal of Probability, 8, 1–20. MathSciNetCrossRef Hamadène, S., & Ouknine, Y. (2003). Reflected backward stochastic differential equation with jumps and random obstacle. Electronic Journal of Probability, 8, 1–20. MathSciNetCrossRef
149.
go back to reference Ikeda, N., & Watanabe, S. (1989). Stochastic differential equations and diffusion processes (2nd ed.). Amsterdam: North-Holland. MATH Ikeda, N., & Watanabe, S. (1989). Stochastic differential equations and diffusion processes (2nd ed.). Amsterdam: North-Holland. MATH
153.
go back to reference Jacod, J., & Shiryaev, A. (2003). Limit theorems for stochastic processes. Berlin: Springer. MATHCrossRef Jacod, J., & Shiryaev, A. (2003). Limit theorems for stochastic processes. Berlin: Springer. MATHCrossRef
159.
go back to reference Jeanblanc, M., Yor, M., & Chesney, M. (2010). Mathematical methods for financial markets. Berlin: Springer. Jeanblanc, M., Yor, M., & Chesney, M. (2010). Mathematical methods for financial markets. Berlin: Springer.
167.
go back to reference Kunita, H. (2010). Itô’s stochastic calculus: its surprising power for applications. Stochastic Processes and Their Applications, 120, 622–652. MathSciNetMATHCrossRef Kunita, H. (2010). Itô’s stochastic calculus: its surprising power for applications. Stochastic Processes and Their Applications, 120, 622–652. MathSciNetMATHCrossRef
168.
go back to reference Kunita, H., & Watanabe, T. (1963). Notes on transformations of Markov processes connected with multiplicative functionals. Memoirs of the Faculty of Science. Kyushu University. Series A. Mathematics, 17, 181–191. MathSciNetMATHCrossRef Kunita, H., & Watanabe, T. (1963). Notes on transformations of Markov processes connected with multiplicative functionals. Memoirs of the Faculty of Science. Kyushu University. Series A. Mathematics, 17, 181–191. MathSciNetMATHCrossRef
170.
go back to reference Kushner, H., & Dupuis, B. (1992). Numerical methods for stochastic control problems in continuous time. Berlin: Springer. MATHCrossRef Kushner, H., & Dupuis, B. (1992). Numerical methods for stochastic control problems in continuous time. Berlin: Springer. MATHCrossRef
186.
go back to reference Lepeltier, J.-P., & Maingueneau, M. (1984). Le jeu de Dynkin en théorie générale sans l’hypothèse de Mokobodski. Stochastics, 13, 25–44. MathSciNetMATHCrossRef Lepeltier, J.-P., & Maingueneau, M. (1984). Le jeu de Dynkin en théorie générale sans l’hypothèse de Mokobodski. Stochastics, 13, 25–44. MathSciNetMATHCrossRef
193.
go back to reference Lipton, A. (2002). Assets with jumps. Risk, September 2002, 149–153. Lipton, A. (2002). Assets with jumps. Risk, September 2002, 149–153.
194.
go back to reference Lipton, A., & Mc Ghee, W. (2002). Universal barriers. Risk, May 2002, 81–85. Lipton, A., & Mc Ghee, W. (2002). Universal barriers. Risk, May 2002, 81–85.
214.
go back to reference Nualart, D. (1995). The Malliavin calculus and related topics. New York: Springer. MATH Nualart, D. (1995). The Malliavin calculus and related topics. New York: Springer. MATH
217.
go back to reference Palmowski, Z., & Rolski, T. (2002). A technique for exponential change of measure for Markov processes. Bernoulli, 8(6), 767–785. MathSciNetMATH Palmowski, Z., & Rolski, T. (2002). A technique for exponential change of measure for Markov processes. Bernoulli, 8(6), 767–785. MathSciNetMATH
219.
go back to reference Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490. MathSciNetMATHCrossRef Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490. MathSciNetMATHCrossRef
228.
go back to reference Protter, P. E. (2004). Stochastic integration and differential equations (2nd ed.). Berlin: Springer. MATH Protter, P. E. (2004). Stochastic integration and differential equations (2nd ed.). Berlin: Springer. MATH
238.
go back to reference Royer, M. (1996). Backward stochastic differential equations with jumps and related nonlinear expectations. Stochastic Processes and Their Applications, 13(3), 293–317. Royer, M. (1996). Backward stochastic differential equations with jumps and related nonlinear expectations. Stochastic Processes and Their Applications, 13(3), 293–317.
247.
go back to reference Soner, M., Touzi, N., & Zhang, J. (2012). Wellposedness of second order backward SDEs. Probability Theory and Related Fields, 153, 149–190. MathSciNetMATHCrossRef Soner, M., Touzi, N., & Zhang, J. (2012). Wellposedness of second order backward SDEs. Probability Theory and Related Fields, 153, 149–190. MathSciNetMATHCrossRef
Metadata
Title
Backward Stochastic Differential Equations
Author
Prof. Stéphane Crépey
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37113-4_12

Premium Partner