Skip to main content
Top

2013 | OriginalPaper | Chapter

13. Analytic Approach

Author : Prof. Stéphane Crépey

Published in: Financial Modeling

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we derive the companion variational inequality approach to the reflected BSDEs of Chap. 12. First we introduce systems of partial integro-differential variational inequalities associated with these BSDEs and we state suitable definitions of viscosity solutions for related problems. Remember that BSDEs are used to model nonlinear phenomena, meaning that the equivalent PDEs (or systems of them, or PIDEs) are nonlinear too. They therefore don’t have classical solutions, but only solutions in weaker senses, viscosity solutions being the notion of choice for the kind of nonlinearities we face in pricing (or more general control) problems, which at least have some kind of comparison property (recall the sub- versus super-martingale story sketched in the discussion of Chap. 2).
We then deal with the corresponding existence, uniqueness and stability issues. The value processes (first components) in the solutions of the BSDEs is characterized in terms of the value functions for related optimal stopping or Dynkin game problems. We then establish a discontinuous viscosity solutions comparison (again) principle, which is the deterministic counterpart of the BSDEs comparison theorem alluded to above. In particular, this comparison principle implies uniqueness of viscosity solutions for the related obstacle problems. The comparison principle is also used for proving the convergence of stable, monotone and consistent deterministic approximation schemes. The notion of viscosity solutions is nice because everything happens as if it wasn’t there: all the classical results which apply to linear problems can be extended to nonlinear problems endowed with a comparison property, provided one switches to the notion of viscosity solutions for these problems. But the underlying mathematics are nontrivial, which is why we need Chap. 13!

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the sense that, for every iI, \(\overline{\mathcal{O}}\cap ({\mathbb{R}}^{d}\times\{i\}) \) is the closure of \({\mathcal{O}}\cap({\mathbb{R}}^{d}\times\{ i\})\), identified with a subset of \({\mathbb{R}}^{d}\).
 
2
Under the assumption (M).
 
3
Modulus of continuity of g.
 
4
(A) suggests “approximation”, for which this extended monotonicity of g is intended.
 
Literature
3.
go back to reference Alvarez, O., & Tourin, A. (1996). Viscosity solutions of nonlinear integro-differential equations. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire, 13(3), 293–317. MathSciNetMATH Alvarez, O., & Tourin, A. (1996). Viscosity solutions of nonlinear integro-differential equations. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire, 13(3), 293–317. MathSciNetMATH
4.
go back to reference Amadori, A. L. (2003). Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential and Integral Equations, 16(7), 787–811. MathSciNetMATH Amadori, A. L. (2003). Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential and Integral Equations, 16(7), 787–811. MathSciNetMATH
5.
go back to reference Amadori, A. L. (2007). The obstacle problem for nonlinear integro-differential operators arising in option pricing. Ricerche Di Matematica, 56(1), 1–17. MathSciNetMATHCrossRef Amadori, A. L. (2007). The obstacle problem for nonlinear integro-differential operators arising in option pricing. Ricerche Di Matematica, 56(1), 1–17. MathSciNetMATHCrossRef
16.
go back to reference Bally, V., Caballero, E., Fernandez, B., & El-Karoui, N. (2002). Reflected BSDE’s PDE’s and variational inequalities (INRIA Technical Report No. 4455). Bally, V., Caballero, E., Fernandez, B., & El-Karoui, N. (2002). Reflected BSDE’s PDE’s and variational inequalities (INRIA Technical Report No. 4455).
17.
go back to reference Bally, V., & Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly stochastic differential equations. Journal of Theoretical Probability, 14(1), 125–164. MathSciNetMATHCrossRef Bally, V., & Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly stochastic differential equations. Journal of Theoretical Probability, 14(1), 125–164. MathSciNetMATHCrossRef
20.
go back to reference Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83. MathSciNetMATHCrossRef Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83. MathSciNetMATHCrossRef
21.
go back to reference Barles, G., & Imbert, C. (2008). Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Annales de L’IHP, 25(3), 567–585. MathSciNetMATH Barles, G., & Imbert, C. (2008). Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Annales de L’IHP, 25(3), 567–585. MathSciNetMATH
22.
go back to reference Barles, G., & Lesigne, L. (1997). SDE, BSDE and PDE. In N. El Karoui & L. Mazliak (Eds.), Pitman research notes in mathematics series: Vol. 364. Backward stochastic differential equations (pp. 47–80). Barles, G., & Lesigne, L. (1997). SDE, BSDE and PDE. In N. El Karoui & L. Mazliak (Eds.), Pitman research notes in mathematics series: Vol. 364. Backward stochastic differential equations (pp. 47–80).
23.
go back to reference Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4, 271–283. MathSciNetMATH Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4, 271–283. MathSciNetMATH
27.
go back to reference Bensoussan, A., & Lions, J.-L. (1982). Applications of variational inequalities in stochastic control. Amsterdam: North-Holland. MATH Bensoussan, A., & Lions, J.-L. (1982). Applications of variational inequalities in stochastic control. Amsterdam: North-Holland. MATH
28.
go back to reference Bensoussan, A., & Lions, J.-L. (1984). Impulse control and quasi-variational inequalities. Paris: Gauthier-Villars. Bensoussan, A., & Lions, J.-L. (1984). Impulse control and quasi-variational inequalities. Paris: Gauthier-Villars.
57.
go back to reference Briani, M., La Chioma, C., & Natalini, R. (2004). Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numerische Mathematik, 98(4), 607–646. MathSciNetMATHCrossRef Briani, M., La Chioma, C., & Natalini, R. (2004). Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numerische Mathematik, 98(4), 607–646. MathSciNetMATHCrossRef
72.
go back to reference Cont, R., & Voltchkova, K. (2005). A finite difference methods for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626. MathSciNetMATHCrossRef Cont, R., & Voltchkova, K. (2005). A finite difference methods for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626. MathSciNetMATHCrossRef
75.
go back to reference Crandall, M., Ishii, H., & Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27, 1–67. MathSciNetMATHCrossRef Crandall, M., Ishii, H., & Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27, 1–67. MathSciNetMATHCrossRef
122.
go back to reference Fleming, W., & Soner, H. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer. MATH Fleming, W., & Soner, H. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer. MATH
150.
go back to reference Ishii, H., & Koike, S. (1991). Viscosity solutions for monotone systems of second-order elliptic PDEs. Communications in Partial Differential Equations, 16(6–7), 1095–1128. MathSciNetMATHCrossRef Ishii, H., & Koike, S. (1991). Viscosity solutions for monotone systems of second-order elliptic PDEs. Communications in Partial Differential Equations, 16(6–7), 1095–1128. MathSciNetMATHCrossRef
157.
go back to reference Jakobsen, E. R., Karlsen, K. H., & La Chioma, C. (2008). Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numerische Mathematik, 110(2), 221–255. MathSciNetMATHCrossRef Jakobsen, E. R., Karlsen, K. H., & La Chioma, C. (2008). Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numerische Mathematik, 110(2), 221–255. MathSciNetMATHCrossRef
196.
go back to reference Ma, J., & Cvitanić, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. Journal of Applied Mathematics and Stochastic Analysis, 14(2), 113–138. MathSciNetMATHCrossRef Ma, J., & Cvitanić, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. Journal of Applied Mathematics and Stochastic Analysis, 14(2), 113–138. MathSciNetMATHCrossRef
219.
go back to reference Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490. MathSciNetMATHCrossRef Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490. MathSciNetMATHCrossRef
223.
go back to reference Pham, H. (1998). Optimal stopping of controlled jump-diffusion processes: a viscosity solution approach. Journal of Mathematical Systems Estimation and Control, 8, 1–27. MathSciNet Pham, H. (1998). Optimal stopping of controlled jump-diffusion processes: a viscosity solution approach. Journal of Mathematical Systems Estimation and Control, 8, 1–27. MathSciNet
Metadata
Title
Analytic Approach
Author
Prof. Stéphane Crépey
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37113-4_13

Premium Partner