Skip to main content

2013 | OriginalPaper | Buchkapitel

13. Analytic Approach

verfasst von : Prof. Stéphane Crépey

Erschienen in: Financial Modeling

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we derive the companion variational inequality approach to the reflected BSDEs of Chap. 12. First we introduce systems of partial integro-differential variational inequalities associated with these BSDEs and we state suitable definitions of viscosity solutions for related problems. Remember that BSDEs are used to model nonlinear phenomena, meaning that the equivalent PDEs (or systems of them, or PIDEs) are nonlinear too. They therefore don’t have classical solutions, but only solutions in weaker senses, viscosity solutions being the notion of choice for the kind of nonlinearities we face in pricing (or more general control) problems, which at least have some kind of comparison property (recall the sub- versus super-martingale story sketched in the discussion of Chap. 2).
We then deal with the corresponding existence, uniqueness and stability issues. The value processes (first components) in the solutions of the BSDEs is characterized in terms of the value functions for related optimal stopping or Dynkin game problems. We then establish a discontinuous viscosity solutions comparison (again) principle, which is the deterministic counterpart of the BSDEs comparison theorem alluded to above. In particular, this comparison principle implies uniqueness of viscosity solutions for the related obstacle problems. The comparison principle is also used for proving the convergence of stable, monotone and consistent deterministic approximation schemes. The notion of viscosity solutions is nice because everything happens as if it wasn’t there: all the classical results which apply to linear problems can be extended to nonlinear problems endowed with a comparison property, provided one switches to the notion of viscosity solutions for these problems. But the underlying mathematics are nontrivial, which is why we need Chap. 13!

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the sense that, for every iI, \(\overline{\mathcal{O}}\cap ({\mathbb{R}}^{d}\times\{i\}) \) is the closure of \({\mathcal{O}}\cap({\mathbb{R}}^{d}\times\{ i\})\), identified with a subset of \({\mathbb{R}}^{d}\).
 
2
Under the assumption (M).
 
3
Modulus of continuity of g.
 
4
(A) suggests “approximation”, for which this extended monotonicity of g is intended.
 
Literatur
3.
Zurück zum Zitat Alvarez, O., & Tourin, A. (1996). Viscosity solutions of nonlinear integro-differential equations. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire, 13(3), 293–317. MathSciNetMATH Alvarez, O., & Tourin, A. (1996). Viscosity solutions of nonlinear integro-differential equations. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire, 13(3), 293–317. MathSciNetMATH
4.
Zurück zum Zitat Amadori, A. L. (2003). Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential and Integral Equations, 16(7), 787–811. MathSciNetMATH Amadori, A. L. (2003). Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential and Integral Equations, 16(7), 787–811. MathSciNetMATH
5.
Zurück zum Zitat Amadori, A. L. (2007). The obstacle problem for nonlinear integro-differential operators arising in option pricing. Ricerche Di Matematica, 56(1), 1–17. MathSciNetMATHCrossRef Amadori, A. L. (2007). The obstacle problem for nonlinear integro-differential operators arising in option pricing. Ricerche Di Matematica, 56(1), 1–17. MathSciNetMATHCrossRef
16.
Zurück zum Zitat Bally, V., Caballero, E., Fernandez, B., & El-Karoui, N. (2002). Reflected BSDE’s PDE’s and variational inequalities (INRIA Technical Report No. 4455). Bally, V., Caballero, E., Fernandez, B., & El-Karoui, N. (2002). Reflected BSDE’s PDE’s and variational inequalities (INRIA Technical Report No. 4455).
17.
Zurück zum Zitat Bally, V., & Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly stochastic differential equations. Journal of Theoretical Probability, 14(1), 125–164. MathSciNetMATHCrossRef Bally, V., & Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly stochastic differential equations. Journal of Theoretical Probability, 14(1), 125–164. MathSciNetMATHCrossRef
20.
Zurück zum Zitat Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83. MathSciNetMATHCrossRef Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83. MathSciNetMATHCrossRef
21.
Zurück zum Zitat Barles, G., & Imbert, C. (2008). Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Annales de L’IHP, 25(3), 567–585. MathSciNetMATH Barles, G., & Imbert, C. (2008). Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Annales de L’IHP, 25(3), 567–585. MathSciNetMATH
22.
Zurück zum Zitat Barles, G., & Lesigne, L. (1997). SDE, BSDE and PDE. In N. El Karoui & L. Mazliak (Eds.), Pitman research notes in mathematics series: Vol. 364. Backward stochastic differential equations (pp. 47–80). Barles, G., & Lesigne, L. (1997). SDE, BSDE and PDE. In N. El Karoui & L. Mazliak (Eds.), Pitman research notes in mathematics series: Vol. 364. Backward stochastic differential equations (pp. 47–80).
23.
Zurück zum Zitat Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4, 271–283. MathSciNetMATH Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4, 271–283. MathSciNetMATH
27.
Zurück zum Zitat Bensoussan, A., & Lions, J.-L. (1982). Applications of variational inequalities in stochastic control. Amsterdam: North-Holland. MATH Bensoussan, A., & Lions, J.-L. (1982). Applications of variational inequalities in stochastic control. Amsterdam: North-Holland. MATH
28.
Zurück zum Zitat Bensoussan, A., & Lions, J.-L. (1984). Impulse control and quasi-variational inequalities. Paris: Gauthier-Villars. Bensoussan, A., & Lions, J.-L. (1984). Impulse control and quasi-variational inequalities. Paris: Gauthier-Villars.
57.
Zurück zum Zitat Briani, M., La Chioma, C., & Natalini, R. (2004). Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numerische Mathematik, 98(4), 607–646. MathSciNetMATHCrossRef Briani, M., La Chioma, C., & Natalini, R. (2004). Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numerische Mathematik, 98(4), 607–646. MathSciNetMATHCrossRef
72.
Zurück zum Zitat Cont, R., & Voltchkova, K. (2005). A finite difference methods for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626. MathSciNetMATHCrossRef Cont, R., & Voltchkova, K. (2005). A finite difference methods for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626. MathSciNetMATHCrossRef
75.
Zurück zum Zitat Crandall, M., Ishii, H., & Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27, 1–67. MathSciNetMATHCrossRef Crandall, M., Ishii, H., & Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27, 1–67. MathSciNetMATHCrossRef
122.
Zurück zum Zitat Fleming, W., & Soner, H. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer. MATH Fleming, W., & Soner, H. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer. MATH
150.
Zurück zum Zitat Ishii, H., & Koike, S. (1991). Viscosity solutions for monotone systems of second-order elliptic PDEs. Communications in Partial Differential Equations, 16(6–7), 1095–1128. MathSciNetMATHCrossRef Ishii, H., & Koike, S. (1991). Viscosity solutions for monotone systems of second-order elliptic PDEs. Communications in Partial Differential Equations, 16(6–7), 1095–1128. MathSciNetMATHCrossRef
157.
Zurück zum Zitat Jakobsen, E. R., Karlsen, K. H., & La Chioma, C. (2008). Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numerische Mathematik, 110(2), 221–255. MathSciNetMATHCrossRef Jakobsen, E. R., Karlsen, K. H., & La Chioma, C. (2008). Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numerische Mathematik, 110(2), 221–255. MathSciNetMATHCrossRef
196.
Zurück zum Zitat Ma, J., & Cvitanić, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. Journal of Applied Mathematics and Stochastic Analysis, 14(2), 113–138. MathSciNetMATHCrossRef Ma, J., & Cvitanić, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. Journal of Applied Mathematics and Stochastic Analysis, 14(2), 113–138. MathSciNetMATHCrossRef
219.
Zurück zum Zitat Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490. MathSciNetMATHCrossRef Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490. MathSciNetMATHCrossRef
223.
Zurück zum Zitat Pham, H. (1998). Optimal stopping of controlled jump-diffusion processes: a viscosity solution approach. Journal of Mathematical Systems Estimation and Control, 8, 1–27. MathSciNet Pham, H. (1998). Optimal stopping of controlled jump-diffusion processes: a viscosity solution approach. Journal of Mathematical Systems Estimation and Control, 8, 1–27. MathSciNet
Metadaten
Titel
Analytic Approach
verfasst von
Prof. Stéphane Crépey
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37113-4_13

Premium Partner