Skip to main content
Top
Published in: Experiments in Fluids 6/2020

01-06-2020 | Research Article

Simultaneous 2D filtered Rayleigh scattering thermometry and stereoscopic particle image velocimetry measurements in turbulent non-premixed flames

Authors: Thomas A. McManus, Jeffrey A. Sutton

Published in: Experiments in Fluids | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current work presents simultaneous high-resolution temperature and three-component velocity measurements taken in a series of turbulent (Re = 10,000, 20,000, and 30,000) piloted, non-premixed jet flames using filtered Rayleigh scattering (FRS) thermometry and stereoscopic particle image velocimetry (sPIV). This manuscript details the experimental approach with a key focus on the experimental protocol and specific challenges unique to simultaneous single-shot FRS/sPIV measurements in turbulent non-premixed flames. Specific areas of discussion include the experimental particle scattering rejection for FRS measurements, elimination of signal “crosstalk” between FRS and PIV channels, tracer particle selection, data processing for noise removal, and spatial resolution for both the temperature and velocity measurements. Sample joint temperature/velocity fields are presented highlighting interactions between the flow turbulence and the temperature fields, and a detailed statistical assessment of the temperature and velocity measurements demonstrates the quantitative nature of the results. Dissipation spectra from the measured temperature and velocity fluctuations are used to assess the true spatial resolution of the measurements. Results indicate that the sPIV measurements are resolved well into the dissipative range and the highest spatial frequencies (smallest dissipative scales) are resolved for the temperature measurements under all flame cases and measurement locations. The current joint FRS/sPIV approach enables the first simultaneous single-shot temperature/velocity imaging in turbulent non-premixed flames.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
For a detailed description of the processes that lead to both the particle and gas-phase spectra, please see McManus and Sutton (2019).
 
Literature
go back to reference Allison PM, McManus TA, Sutton JA (2016) Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering. Opt Lett 41(6):1074–1077CrossRef Allison PM, McManus TA, Sutton JA (2016) Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering. Opt Lett 41(6):1074–1077CrossRef
go back to reference Barlow RS (2007) Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc Combust Inst 31(1):49–75CrossRef Barlow RS (2007) Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc Combust Inst 31(1):49–75CrossRef
go back to reference Barlow RS, Frank JH (1998) Effects of turbulence on species mass fractions in methane/air jet flames. Proc Combust Inst 27(1):1087–1095CrossRef Barlow RS, Frank JH (1998) Effects of turbulence on species mass fractions in methane/air jet flames. Proc Combust Inst 27(1):1087–1095CrossRef
go back to reference Bergmann V, Meier W, Wolff D, Stricker W (1998) Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl Phys B 66(4):489CrossRef Bergmann V, Meier W, Wolff D, Stricker W (1998) Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl Phys B 66(4):489CrossRef
go back to reference Clemens NT (2002) Flow Imaging. In: Encyclopedia of imaging science and technology. Wiley Clemens NT (2002) Flow Imaging. In: Encyclopedia of imaging science and technology. Wiley
go back to reference Dibble RW, Hollenbach RE (1981) Laser Rayleigh thermometry in turbulent flames. Proc Combust Inst 18(1):1489CrossRef Dibble RW, Hollenbach RE (1981) Laser Rayleigh thermometry in turbulent flames. Proc Combust Inst 18(1):1489CrossRef
go back to reference Eckbreth AC (1996) Laser diagnostics for combustion temperature and species. Gordon and Breach Publishers, AmsterdamCrossRef Eckbreth AC (1996) Laser diagnostics for combustion temperature and species. Gordon and Breach Publishers, AmsterdamCrossRef
go back to reference Elliott G, Glumac N, Carter C (2001) Molecular filtered Rayleigh scattering applied to combustion. Meas Sci Technol 12(4):452CrossRef Elliott G, Glumac N, Carter C (2001) Molecular filtered Rayleigh scattering applied to combustion. Meas Sci Technol 12(4):452CrossRef
go back to reference Fernandes E, Ferrão P, Heitor M, Moreira A (1994) Velocity—temperature correlations in recirculating flames with and without swirl. Exp Thermal Fluid Sci 9(2):241–249CrossRef Fernandes E, Ferrão P, Heitor M, Moreira A (1994) Velocity—temperature correlations in recirculating flames with and without swirl. Exp Thermal Fluid Sci 9(2):241–249CrossRef
go back to reference Frank JH, Kaiser SA (2008) High-resolution imaging of dissipative structures in a turbulent jet flame with laser Rayleigh scattering. Exp Fluids 44(2):221–233CrossRef Frank JH, Kaiser SA (2008) High-resolution imaging of dissipative structures in a turbulent jet flame with laser Rayleigh scattering. Exp Fluids 44(2):221–233CrossRef
go back to reference Frank JH, Kaiser SA (2010) High-resolution imaging of turbulence structures in jet flames and non-reacting jets with laser Rayleigh scattering. Exp Fluids 49(4):823–837CrossRef Frank JH, Kaiser SA (2010) High-resolution imaging of turbulence structures in jet flames and non-reacting jets with laser Rayleigh scattering. Exp Fluids 49(4):823–837CrossRef
go back to reference Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178MathSciNetMATHCrossRef Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178MathSciNetMATHCrossRef
go back to reference Goss LP, Trump DD, Roquemore WM (1988) Combined CARS/LDA instrument for simultaneous temperature and velocity measurements. Exp Fluids 6(3):189–198CrossRef Goss LP, Trump DD, Roquemore WM (1988) Combined CARS/LDA instrument for simultaneous temperature and velocity measurements. Exp Fluids 6(3):189–198CrossRef
go back to reference Goss LP, Trump DD, Lynn WF, Chen TH, Schmoll WJ, Roquemore WM (1989) Second-generation combined CARS-LDV instrument for simultaneous temperature and velocity measurements in combusting flows. Rev Sci Instrum 60(4):638–645CrossRef Goss LP, Trump DD, Lynn WF, Chen TH, Schmoll WJ, Roquemore WM (1989) Second-generation combined CARS-LDV instrument for simultaneous temperature and velocity measurements in combusting flows. Rev Sci Instrum 60(4):638–645CrossRef
go back to reference Gould RD, Stevenson WH, Thompson HD (1994) Simultaneous velocity and temperature measurements in a premixed dump combustor. J Propul Power 10(5):639–645CrossRef Gould RD, Stevenson WH, Thompson HD (1994) Simultaneous velocity and temperature measurements in a premixed dump combustor. J Propul Power 10(5):639–645CrossRef
go back to reference Heitor M, Taylor A, Whitelaw J (1985) Simultaneous velocity and temperature measurements in a premixed flame. Exp Fluids 3(6):323–339CrossRef Heitor M, Taylor A, Whitelaw J (1985) Simultaneous velocity and temperature measurements in a premixed flame. Exp Fluids 3(6):323–339CrossRef
go back to reference Hoffman D, Münch KU, Leipertz A (1996) Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering. Opt Lett 21(7):525–527CrossRef Hoffman D, Münch KU, Leipertz A (1996) Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering. Opt Lett 21(7):525–527CrossRef
go back to reference Kaiser SA, Frank JH (2007) Imaging of dissipative structures in the near field of a turbulent non-premixed jet flame. Proc Combust Inst 31(1):1515–1523CrossRef Kaiser SA, Frank JH (2007) Imaging of dissipative structures in the near field of a turbulent non-premixed jet flame. Proc Combust Inst 31(1):1515–1523CrossRef
go back to reference Kaiser SA, Frank JH (2009) Spatial scales of extinction and dissipation in the near field of non-premixed turbulent jet flames. Proc Combust Inst 32(2):1639–1646CrossRef Kaiser SA, Frank JH (2009) Spatial scales of extinction and dissipation in the near field of non-premixed turbulent jet flames. Proc Combust Inst 32(2):1639–1646CrossRef
go back to reference Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. I. Double pulsed systems. Meas Sci Technol 1(11):1202–1215CrossRef Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. I. Double pulsed systems. Meas Sci Technol 1(11):1202–1215CrossRef
go back to reference Kearney SP, Schefer RW, Beresh SJ, Grasser TW (2005) Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering. Appl Opt 44(9):1548–1558CrossRef Kearney SP, Schefer RW, Beresh SJ, Grasser TW (2005) Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering. Appl Opt 44(9):1548–1558CrossRef
go back to reference Kohse-Höinghaus K, Jeffries JB (2002) Applied combustion diagnostics. Taylor & Francis, New YorkCrossRef Kohse-Höinghaus K, Jeffries JB (2002) Applied combustion diagnostics. Taylor & Francis, New YorkCrossRef
go back to reference Kohse-Höinghaus K, Barlow RS, Aldén M, Wolfrum J (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst 30(1):89–123CrossRef Kohse-Höinghaus K, Barlow RS, Aldén M, Wolfrum J (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst 30(1):89–123CrossRef
go back to reference Kojima J, Nguyen Q-V (2002) Laser pulse-stretching using multiple optical ring-cavities. Appl Opt 41:6360–6370CrossRef Kojima J, Nguyen Q-V (2002) Laser pulse-stretching using multiple optical ring-cavities. Appl Opt 41:6360–6370CrossRef
go back to reference Li Y, Gupta R (2002) Simultaneous measurement of absolute OH concentration, temperature and flow velocity in a flame by photothermal deflection spectroscopy. Appl Phys B 75(8):903–906CrossRef Li Y, Gupta R (2002) Simultaneous measurement of absolute OH concentration, temperature and flow velocity in a flame by photothermal deflection spectroscopy. Appl Phys B 75(8):903–906CrossRef
go back to reference McManus TA, Sutton JA (2019) Quantitative planar temperature imaging in turbulent non-premixed flames using filtered rayleigh scattering. Appl Opt 58(11):2936–2947CrossRef McManus TA, Sutton JA (2019) Quantitative planar temperature imaging in turbulent non-premixed flames using filtered rayleigh scattering. Appl Opt 58(11):2936–2947CrossRef
go back to reference McManus TA, Papageorge MJ, Fuest F, Sutton JA (2015) Spatio-temporal characteristics of temperature fluctuations in turbulent non-premixed jet flames. Proc Combust Inst 35:1191–1198CrossRef McManus TA, Papageorge MJ, Fuest F, Sutton JA (2015) Spatio-temporal characteristics of temperature fluctuations in turbulent non-premixed jet flames. Proc Combust Inst 35:1191–1198CrossRef
go back to reference McManus TA, Monje IT, Sutton JA (2019) Experimental assessment of the Tenti S6 model for combustion-relevant gases and filtered Rayleigh scattering applications. Appl Phys B 125(1):13CrossRef McManus TA, Monje IT, Sutton JA (2019) Experimental assessment of the Tenti S6 model for combustion-relevant gases and filtered Rayleigh scattering applications. Appl Phys B 125(1):13CrossRef
go back to reference Meier W, Barlow RS, Chen YL, Chen JY (2000) Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence–chemistry interaction. Combust Flame 123(3):326–343CrossRef Meier W, Barlow RS, Chen YL, Chen JY (2000) Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence–chemistry interaction. Combust Flame 123(3):326–343CrossRef
go back to reference Miles R, Forkey J, Lempert W (1992) Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities. In: 28th joint propulsion conference and exhibit. American Institute of Aeronautics and Astronautics Miles R, Forkey J, Lempert W (1992) Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities. In: 28th joint propulsion conference and exhibit. American Institute of Aeronautics and Astronautics
go back to reference Most D, Leipertz A (2001) Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique. Appl Opt 40(30):5379–5387CrossRef Most D, Leipertz A (2001) Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique. Appl Opt 40(30):5379–5387CrossRef
go back to reference Most D, Dinkelacker F, Leipertz A (2002) Direct determination of the turbulent flux by simultaneous application of filtered rayleigh scattering thermometry and particle image velocimetry. Proc Combust Inst 29(2):2669–2677CrossRef Most D, Dinkelacker F, Leipertz A (2002) Direct determination of the turbulent flux by simultaneous application of filtered rayleigh scattering thermometry and particle image velocimetry. Proc Combust Inst 29(2):2669–2677CrossRef
go back to reference Papageorge MJ, McManus TA, Fuest F, Sutton JA (2014) Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality. Appl Phys B 115(2):197–213CrossRef Papageorge MJ, McManus TA, Fuest F, Sutton JA (2014) Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality. Appl Phys B 115(2):197–213CrossRef
go back to reference Patton R, Sutton J (2013) Seed laser power effects on the spectral purity of Q-switched Nd:YAG lasers and the implications for filtered rayleigh scattering measurements. Appl Phys B 111(3):457–468CrossRef Patton R, Sutton J (2013) Seed laser power effects on the spectral purity of Q-switched Nd:YAG lasers and the implications for filtered rayleigh scattering measurements. Appl Phys B 111(3):457–468CrossRef
go back to reference Schmidt BE, Sutton JA (2020) Improvements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularization. Exp Fluids 61:32CrossRef Schmidt BE, Sutton JA (2020) Improvements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularization. Exp Fluids 61:32CrossRef
go back to reference Schmidt BE, Skiba AW, Hammack SD, Carter CD, Sutton JA (2020) High-resolution velocity measurements in turbulent premixed flames using wavelet-based optical flow velocimetry (wOFV). In: Proceedings of the combustion institute, vol 38 Schmidt BE, Skiba AW, Hammack SD, Carter CD, Sutton JA (2020) High-resolution velocity measurements in turbulent premixed flames using wavelet-based optical flow velocimetry (wOFV). In: Proceedings of the combustion institute, vol 38
go back to reference Sutton JA, Patton RA (2014) Improvements in filtered Rayleigh scattering measurements using Fabry–Perot etalons for spectral filtering of pulsed, 532-nm Nd:YAG output. Appl Phys B 116(3):681–698CrossRef Sutton JA, Patton RA (2014) Improvements in filtered Rayleigh scattering measurements using Fabry–Perot etalons for spectral filtering of pulsed, 532-nm Nd:YAG output. Appl Phys B 116(3):681–698CrossRef
go back to reference Tacina KM, Dahm WJ (2000) Effects of heat release on turbulent shear flows. Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames. J Fluid Mech 415:23–44MathSciNetMATHCrossRef Tacina KM, Dahm WJ (2000) Effects of heat release on turbulent shear flows. Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames. J Fluid Mech 415:23–44MathSciNetMATHCrossRef
go back to reference Tanaka H, Yanagi T (1983) Cross-correlation of velocity and temperature in a premixed turbulent flame. Combust Flame 51:183–191CrossRef Tanaka H, Yanagi T (1983) Cross-correlation of velocity and temperature in a premixed turbulent flame. Combust Flame 51:183–191CrossRef
go back to reference Tenti G, Boley CD, Desai RC (1974) On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases. Can J Phys 52(4):285–290CrossRef Tenti G, Boley CD, Desai RC (1974) On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases. Can J Phys 52(4):285–290CrossRef
go back to reference Tummers M, Van Veen E, George N, Rodink R, Hanjalić K (2004) Measurement of velocity-temperature correlations in a turbulent diffusion flame. Exp Fluids 37(3):364–374CrossRef Tummers M, Van Veen E, George N, Rodink R, Hanjalić K (2004) Measurement of velocity-temperature correlations in a turbulent diffusion flame. Exp Fluids 37(3):364–374CrossRef
go back to reference Wang G, Clemens N, Varghese P (2005) Two-point, high-repetition-rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise. Appl Opt 44(31):6741–6751CrossRef Wang G, Clemens N, Varghese P (2005) Two-point, high-repetition-rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise. Appl Opt 44(31):6741–6751CrossRef
go back to reference Wang G, Karpetis AN, Barlow RS (2007) Dissipation length scales in turbulent nonpremixed jet flames. Combust Flame 148(1):62–75CrossRef Wang G, Karpetis AN, Barlow RS (2007) Dissipation length scales in turbulent nonpremixed jet flames. Combust Flame 148(1):62–75CrossRef
go back to reference Wygnanski I, Fiedler H (1969) Some measurements in the self-preserving jet. J Fluid Mech 38(3):577–612CrossRef Wygnanski I, Fiedler H (1969) Some measurements in the self-preserving jet. J Fluid Mech 38(3):577–612CrossRef
go back to reference Yanagi T, Mimura Y (1981) Velocity-temperature correlation in premixed flame. In: Proceedings of the combustion institute, vol 18, no 1, Elsevier, pp 1031–1039 Yanagi T, Mimura Y (1981) Velocity-temperature correlation in premixed flame. In: Proceedings of the combustion institute, vol 18, no 1, Elsevier, pp 1031–1039
go back to reference Yoshida A, Tsuji H (1979) Measurements of fluctuating temperature and velocity in a turbulent premixed flame. In: Proceedings of the combustion institute, vol 17, no 1. Elsevier, pp 945–956 Yoshida A, Tsuji H (1979) Measurements of fluctuating temperature and velocity in a turbulent premixed flame. In: Proceedings of the combustion institute, vol 17, no 1. Elsevier, pp 945–956
Metadata
Title
Simultaneous 2D filtered Rayleigh scattering thermometry and stereoscopic particle image velocimetry measurements in turbulent non-premixed flames
Authors
Thomas A. McManus
Jeffrey A. Sutton
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 6/2020
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-02973-z

Other articles of this Issue 6/2020

Experiments in Fluids 6/2020 Go to the issue

Premium Partners