Skip to main content
Top
Published in: Experiments in Fluids 6/2020

01-06-2020 | Research Article

Statistical aspects of tip vortex cavitation inception and desinence in a nuclei deplete flow

Authors: M. T. Khoo, J. A. Venning, B. W. Pearce, P. A. Brandner

Published in: Experiments in Fluids | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tip vortex cavitation (TVC) inception and desinence behaviour of a NACA 0012 cross section, elliptical hydrofoil is investigated from a statistical perspective in a cavitation tunnel. Measurements were made for incidences from \(4^\circ {}\) to \(16^\circ {}\) and Reynolds numbers from \(1.0\times 10^6\) to \(2.1\times 10^6\). The statistics of TVC inception were quantified by taking repeated measurements of the time until the appearance of a tip vortex cavity for a range of fixed incidences. In other experiments, the angle of attack was continuously increased until inception and then decreased until desinence for a range of fixed cavitation numbers. The data were primarily acquired via an automated process using a laser and photodiode to detect the presence of a cavity. Measurements show that TVC inception in a nuclei deplete flow is a probabilistic process for which a large dataset is required for accurate characterisation. The probability of ingesting and activating a nucleus increases with time at a given test condition due to the increased volume of water exposed to low pressures. TVC desinence exhibits far less statistical variation than inception and is largely independent of the natural nuclei population. It does, however, exhibit hysteresis which is dependent on the topology of the cavitating flow. For the desinence of unattached cavitation, there is a small hysteresis between the inception and desinence indices. However, desinence is delayed for attached cavitation.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amini A, Reclari M, Sano T, Iino M, Dreyer M, Farhat M (2019) On the physical mechanism of tip vortex cavitation hysteresis. Exp Fluids 60(7):118 Amini A, Reclari M, Sano T, Iino M, Dreyer M, Farhat M (2019) On the physical mechanism of tip vortex cavitation hysteresis. Exp Fluids 60(7):118
go back to reference Amromin E (2006) Two-range scaling for tip vortex cavitation inception. Ocean Eng 33(3–4):530–534 Amromin E (2006) Two-range scaling for tip vortex cavitation inception. Ocean Eng 33(3–4):530–534
go back to reference Arndt R, Dugue C (1992) Recent advances in tip vortex cavitation research. In: Proceedings of international symposium on propulsors and cavitation, pp 142–149 Arndt R, Dugue C (1992) Recent advances in tip vortex cavitation research. In: Proceedings of international symposium on propulsors and cavitation, pp 142–149
go back to reference Arndt RE, Keller AP (1992) Water quality effects on cavitation inception in a trailing vortex. J Fluids Eng Trans ASME 114(3):430–438 Arndt RE, Keller AP (1992) Water quality effects on cavitation inception in a trailing vortex. J Fluids Eng Trans ASME 114(3):430–438
go back to reference Arndt RE, Maines BH (1994) Further studies of tip vortex cavitation. In: Proceedings of 2nd international symposium on cavitation, Tokyo Arndt RE, Maines BH (1994) Further studies of tip vortex cavitation. In: Proceedings of 2nd international symposium on cavitation, Tokyo
go back to reference Arndt R, Maines B (2000) Nucleation and bubble dynamics in vortical flows. J Fluids Eng Trans ASME 122(3):488–493 Arndt R, Maines B (2000) Nucleation and bubble dynamics in vortical flows. J Fluids Eng Trans ASME 122(3):488–493
go back to reference Arndt R, Arakeri V, Higuchi H (1991) Some observations of tip-vortex cavitation. J Fluid Mech 229:269–289 Arndt R, Arakeri V, Higuchi H (1991) Some observations of tip-vortex cavitation. J Fluid Mech 229:269–289
go back to reference Baker G, Barker S, Bofah K, Saffman P (1974) Laser anemometer measurements of trailing vortices in water. J Fluid Mech 65(2):325–336 Baker G, Barker S, Bofah K, Saffman P (1974) Laser anemometer measurements of trailing vortices in water. J Fluid Mech 65(2):325–336
go back to reference Billet M, Holl J (1979) Scale effects on viscous types of limited cavitation. In: International symposium on cavitation inception, pp 2–7 Billet M, Holl J (1979) Scale effects on viscous types of limited cavitation. In: International symposium on cavitation inception, pp 2–7
go back to reference Blake Jr F (1949) The tensile strength of liquids: a review of the literature. Technical memo no. 9. Technical report, Acoustic Research Laboratory, Harvard University Blake Jr F (1949) The tensile strength of liquids: a review of the literature. Technical memo no. 9. Technical report, Acoustic Research Laboratory, Harvard University
go back to reference Brandner P (2018) Microbubbles and cavitation: Microscales to macroscales. In: International cavitation symposium (CAV) 2018 Brandner P (2018) Microbubbles and cavitation: Microscales to macroscales. In: International cavitation symposium (CAV) 2018
go back to reference Brandner P, Lecoffre Y, Walker G (2007) Design considerations in the development of a modern cavitation tunnel. In: 16th Australasian fluid mechanics conference Brandner P, Lecoffre Y, Walker G (2007) Design considerations in the development of a modern cavitation tunnel. In: 16th Australasian fluid mechanics conference
go back to reference Briançon-Marjollet L, Merle L (1996) Inception, development and noise of a tip vortex cavitation. In: Proceedings of 21st symposium on naval hydrodynamics, pp 851–864 Briançon-Marjollet L, Merle L (1996) Inception, development and noise of a tip vortex cavitation. In: Proceedings of 21st symposium on naval hydrodynamics, pp 851–864
go back to reference Ceccio SL, Brennen CE (1991) Observations of the dynamics and acoustics of travelling bubble cavitation. J Fluid Mech 233:633–660 Ceccio SL, Brennen CE (1991) Observations of the dynamics and acoustics of travelling bubble cavitation. J Fluid Mech 233:633–660
go back to reference Chang N, Yakushiji R, Ganesh H, Ceccio S (2009) Mechanism and scalability of tip vortex cavitation suppression by water and polymer injection. In: Seventh international symposium on cavitation—Cav2009 vol 149, pp 1–12 Chang N, Yakushiji R, Ganesh H, Ceccio S (2009) Mechanism and scalability of tip vortex cavitation suppression by water and polymer injection. In: Seventh international symposium on cavitation—Cav2009 vol 149, pp 1–12
go back to reference Chen L, Zhang L, Peng X, Shao X (2019) Influence of water quality on the tip vortex cavitation inception. Phys Fluids 31(2):023303 Chen L, Zhang L, Peng X, Shao X (2019) Influence of water quality on the tip vortex cavitation inception. Phys Fluids 31(2):023303
go back to reference Danov KD, Stanimirova RD, Kralchevsky PA, Marinova KG, Stoyanov SD, Blijdenstein TB, Cox AR, Pelan EG (2016) Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry. Adv Colloid Interface Sci 233:223–239 Danov KD, Stanimirova RD, Kralchevsky PA, Marinova KG, Stoyanov SD, Blijdenstein TB, Cox AR, Pelan EG (2016) Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry. Adv Colloid Interface Sci 233:223–239
go back to reference Franc JP, Michel JM (2006) Fundamentals of cavitation. Springer, BerlinMATH Franc JP, Michel JM (2006) Fundamentals of cavitation. Springer, BerlinMATH
go back to reference Franklin R (1992) A note on the radius distribution function for microbubbles of gas in water. In: Proceedings of the ASME cavitation and multiphase flow forum, FED-Volume, vol 135, pp 77–85 Franklin R (1992) A note on the radius distribution function for microbubbles of gas in water. In: Proceedings of the ASME cavitation and multiphase flow forum, FED-Volume, vol 135, pp 77–85
go back to reference Fruman D, Dugue C (1994) Tip vortex roll-up and cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 633–654 Fruman D, Dugue C (1994) Tip vortex roll-up and cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 633–654
go back to reference Gavrilov L (1969) On the size distribution of gas bubbles in water. Sov Phys Acoust 15(1):22–24 Gavrilov L (1969) On the size distribution of gas bubbles in water. Sov Phys Acoust 15(1):22–24
go back to reference Gindroz B (1995) Propeller cavitation characteristics: the practical interest of nuclei measurements in test facilities and at sea. In: Proceedings of ASME FED symposium on cavitation Gindroz B (1995) Propeller cavitation characteristics: the practical interest of nuclei measurements in test facilities and at sea. In: Proceedings of ASME FED symposium on cavitation
go back to reference Gindroz B, Billet M (1998) Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers. J Fluids Eng 120(1):171–178 Gindroz B, Billet M (1998) Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers. J Fluids Eng 120(1):171–178
go back to reference Green S (1988) Tip vortices: single phase and cavitating flow phenomena. PhD thesis, California Institute of Technology Green S (1988) Tip vortices: single phase and cavitating flow phenomena. PhD thesis, California Institute of Technology
go back to reference Green S (1991) Correlating single phase flow measurements with observations of trailing vortex cavitation. J Fluids Eng 113(1):125–129 Green S (1991) Correlating single phase flow measurements with observations of trailing vortex cavitation. J Fluids Eng 113(1):125–129
go back to reference Holl J (1960) An effect of air content on the occurrence of cavitation. J Basic Eng 82:941–946 Holl J (1960) An effect of air content on the occurrence of cavitation. J Basic Eng 82:941–946
go back to reference Hsiao CT, Chahine GL (2005) Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution. J Fluids Eng 127(1):55–65 Hsiao CT, Chahine GL (2005) Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution. J Fluids Eng 127(1):55–65
go back to reference Hsiao C, Chahine G (2008) Scaling of tip vortex cavitation inception for a marine open propeller. In: Proceedings of 27th symposium on naval hydrodynamics, Seoul, Korea, pp 5–10 Hsiao C, Chahine G (2008) Scaling of tip vortex cavitation inception for a marine open propeller. In: Proceedings of 27th symposium on naval hydrodynamics, Seoul, Korea, pp 5–10
go back to reference Khoo M, Venning J, Pearce B, Brandner P, Lecoffre Y (2016) Development of a cavitation susceptibility meter for nuclei size distribution measurements. In: 20th Australasian fluid mechanics conference Khoo M, Venning J, Pearce B, Brandner P, Lecoffre Y (2016) Development of a cavitation susceptibility meter for nuclei size distribution measurements. In: 20th Australasian fluid mechanics conference
go back to reference Khoo M, Venning J, Pearce B, Takahashi K, Mori T, Brandner P (2020) Natural nuclei population dynamics in cavitation tunnels. Exp Fluids 61(2):1–20 Khoo M, Venning J, Pearce B, Takahashi K, Mori T, Brandner P (2020) Natural nuclei population dynamics in cavitation tunnels. Exp Fluids 61(2):1–20
go back to reference Laberteaux K, Ceccio S (2001) Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation. J Fluid Mech 431:43–63MATH Laberteaux K, Ceccio S (2001) Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation. J Fluid Mech 431:43–63MATH
go back to reference Lecoffre Y (1999) Cavitation bubble trackers. A. A. Balkema, Amsterdam Lecoffre Y (1999) Cavitation bubble trackers. A. A. Balkema, Amsterdam
go back to reference McCormick B (1962) On cavitation produced by a vortex trailing from a lifting surface. J Basic Eng 84(3):369–378MathSciNet McCormick B (1962) On cavitation produced by a vortex trailing from a lifting surface. J Basic Eng 84(3):369–378MathSciNet
go back to reference Messino D, Sette D, Wanderlingh F (1963) Statistical approach to ultrasonic cavitation. J Acoust Soc Am 35(10):1575–1583 Messino D, Sette D, Wanderlingh F (1963) Statistical approach to ultrasonic cavitation. J Acoust Soc Am 35(10):1575–1583
go back to reference Meyer R, Billet M, Holl J (1992) Freestream nuclei and traveling-bubble cavitation. J Fluids Eng 114(4):672–679 Meyer R, Billet M, Holl J (1992) Freestream nuclei and traveling-bubble cavitation. J Fluids Eng 114(4):672–679
go back to reference Mørch KA (2000) Cavitation nuclei and bubble formation: a dynamic liquid-solid interface problem. J Fluids Eng 122(3):494–498 Mørch KA (2000) Cavitation nuclei and bubble formation: a dynamic liquid-solid interface problem. J Fluids Eng 122(3):494–498
go back to reference O’Hern T, d’Agostino L, Acosta A (1988) Comparison of holographic and Coulter counter measurements of cavitation nuclei in the ocean. J Fluids Eng 110(2):200–207 O’Hern T, d’Agostino L, Acosta A (1988) Comparison of holographic and Coulter counter measurements of cavitation nuclei in the ocean. J Fluids Eng 110(2):200–207
go back to reference Oweis G, van der Hout I, Iyer C, Tryggvason G, Ceccio S (2005) Capture and inception of bubbles near line vortices. Phys Fluids 17(2):022105MATH Oweis G, van der Hout I, Iyer C, Tryggvason G, Ceccio S (2005) Capture and inception of bubbles near line vortices. Phys Fluids 17(2):022105MATH
go back to reference Pennings P, Westerweel J, Van Terwisga T (2015) Flow field measurement around vortex cavitation. Exp Fluids 56(11):206 Pennings P, Westerweel J, Van Terwisga T (2015) Flow field measurement around vortex cavitation. Exp Fluids 56(11):206
go back to reference Randolph K, Dierssen HM, Twardowski M, Cifuentes-Lorenzen A, Zappa CJ (2014) Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. J Geophys Res Oceans 119(2):757–776 Randolph K, Dierssen HM, Twardowski M, Cifuentes-Lorenzen A, Zappa CJ (2014) Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. J Geophys Res Oceans 119(2):757–776
go back to reference Schiebe FR (1969) The influence of gas nuclei size distribution on transient cavitation near inception. Technical report, St. Anthony Falls Laboratory Schiebe FR (1969) The influence of gas nuclei size distribution on transient cavitation near inception. Technical report, St. Anthony Falls Laboratory
go back to reference Shen Y, Gowing S, Pierce R (1984) Cavitation susceptibility measurements by a venturi. In: ASME international symposium on cavitation inception-1984, New Orleans, LA Shen Y, Gowing S, Pierce R (1984) Cavitation susceptibility measurements by a venturi. In: ASME international symposium on cavitation inception-1984, New Orleans, LA
go back to reference Shen YT, Jessup S, Gowing S (2009) Tip vortex cavitation inception scaling for high Reynolds number application. In: ASME/JSME 2003 4th joint fluids summer engineering conference. American Society of Mechanical Engineers: Digital Collection, pp 233–239 Shen YT, Jessup S, Gowing S (2009) Tip vortex cavitation inception scaling for high Reynolds number application. In: ASME/JSME 2003 4th joint fluids summer engineering conference. American Society of Mechanical Engineers: Digital Collection, pp 233–239
go back to reference Sinding KM, Hanson DR, Krane MH, Koncoski J (2018) Insight into tip vortex cavitation using velocity field measurements. In: Proceedings of 10th international symposium on cavitation (CAV2018). ASME Press Sinding KM, Hanson DR, Krane MH, Koncoski J (2018) Insight into tip vortex cavitation using velocity field measurements. In: Proceedings of 10th international symposium on cavitation (CAV2018). ASME Press
go back to reference Song M, Xu L, Peng X, Tang D (2017) An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int J Multiph Flow 90:79–87 Song M, Xu L, Peng X, Tang D (2017) An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int J Multiph Flow 90:79–87
go back to reference Venning J, Khoo M, Pearce B, Brandner P (2018) Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities. Exp Fluids 59(4):71 Venning J, Khoo M, Pearce B, Brandner P (2018) Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities. Exp Fluids 59(4):71
go back to reference Yakushiji R (2009) Mechanism of tip vortex cavitation suppression by polymer and water injection. PhD thesis, The University of Michigan Yakushiji R (2009) Mechanism of tip vortex cavitation suppression by polymer and water injection. PhD thesis, The University of Michigan
go back to reference Zhang LX, Chen LY, Peng XX, Shao XM (2017) The effect of water quality on tip vortex cavitation inception. J Hydrodyn 29(6):954–961 Zhang LX, Chen LY, Peng XX, Shao XM (2017) The effect of water quality on tip vortex cavitation inception. J Hydrodyn 29(6):954–961
Metadata
Title
Statistical aspects of tip vortex cavitation inception and desinence in a nuclei deplete flow
Authors
M. T. Khoo
J. A. Venning
B. W. Pearce
P. A. Brandner
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 6/2020
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-02967-x

Other articles of this Issue 6/2020

Experiments in Fluids 6/2020 Go to the issue

Premium Partners