Skip to main content
Erschienen in: Experiments in Fluids 6/2020

01.06.2020 | Research Article

Statistical aspects of tip vortex cavitation inception and desinence in a nuclei deplete flow

verfasst von: M. T. Khoo, J. A. Venning, B. W. Pearce, P. A. Brandner

Erschienen in: Experiments in Fluids | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tip vortex cavitation (TVC) inception and desinence behaviour of a NACA 0012 cross section, elliptical hydrofoil is investigated from a statistical perspective in a cavitation tunnel. Measurements were made for incidences from \(4^\circ {}\) to \(16^\circ {}\) and Reynolds numbers from \(1.0\times 10^6\) to \(2.1\times 10^6\). The statistics of TVC inception were quantified by taking repeated measurements of the time until the appearance of a tip vortex cavity for a range of fixed incidences. In other experiments, the angle of attack was continuously increased until inception and then decreased until desinence for a range of fixed cavitation numbers. The data were primarily acquired via an automated process using a laser and photodiode to detect the presence of a cavity. Measurements show that TVC inception in a nuclei deplete flow is a probabilistic process for which a large dataset is required for accurate characterisation. The probability of ingesting and activating a nucleus increases with time at a given test condition due to the increased volume of water exposed to low pressures. TVC desinence exhibits far less statistical variation than inception and is largely independent of the natural nuclei population. It does, however, exhibit hysteresis which is dependent on the topology of the cavitating flow. For the desinence of unattached cavitation, there is a small hysteresis between the inception and desinence indices. However, desinence is delayed for attached cavitation.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amini A, Reclari M, Sano T, Iino M, Dreyer M, Farhat M (2019) On the physical mechanism of tip vortex cavitation hysteresis. Exp Fluids 60(7):118 Amini A, Reclari M, Sano T, Iino M, Dreyer M, Farhat M (2019) On the physical mechanism of tip vortex cavitation hysteresis. Exp Fluids 60(7):118
Zurück zum Zitat Amromin E (2006) Two-range scaling for tip vortex cavitation inception. Ocean Eng 33(3–4):530–534 Amromin E (2006) Two-range scaling for tip vortex cavitation inception. Ocean Eng 33(3–4):530–534
Zurück zum Zitat Arndt R, Dugue C (1992) Recent advances in tip vortex cavitation research. In: Proceedings of international symposium on propulsors and cavitation, pp 142–149 Arndt R, Dugue C (1992) Recent advances in tip vortex cavitation research. In: Proceedings of international symposium on propulsors and cavitation, pp 142–149
Zurück zum Zitat Arndt RE, Keller AP (1992) Water quality effects on cavitation inception in a trailing vortex. J Fluids Eng Trans ASME 114(3):430–438 Arndt RE, Keller AP (1992) Water quality effects on cavitation inception in a trailing vortex. J Fluids Eng Trans ASME 114(3):430–438
Zurück zum Zitat Arndt RE, Maines BH (1994) Further studies of tip vortex cavitation. In: Proceedings of 2nd international symposium on cavitation, Tokyo Arndt RE, Maines BH (1994) Further studies of tip vortex cavitation. In: Proceedings of 2nd international symposium on cavitation, Tokyo
Zurück zum Zitat Arndt R, Maines B (2000) Nucleation and bubble dynamics in vortical flows. J Fluids Eng Trans ASME 122(3):488–493 Arndt R, Maines B (2000) Nucleation and bubble dynamics in vortical flows. J Fluids Eng Trans ASME 122(3):488–493
Zurück zum Zitat Arndt R, Arakeri V, Higuchi H (1991) Some observations of tip-vortex cavitation. J Fluid Mech 229:269–289 Arndt R, Arakeri V, Higuchi H (1991) Some observations of tip-vortex cavitation. J Fluid Mech 229:269–289
Zurück zum Zitat Baker G, Barker S, Bofah K, Saffman P (1974) Laser anemometer measurements of trailing vortices in water. J Fluid Mech 65(2):325–336 Baker G, Barker S, Bofah K, Saffman P (1974) Laser anemometer measurements of trailing vortices in water. J Fluid Mech 65(2):325–336
Zurück zum Zitat Billet M, Holl J (1979) Scale effects on viscous types of limited cavitation. In: International symposium on cavitation inception, pp 2–7 Billet M, Holl J (1979) Scale effects on viscous types of limited cavitation. In: International symposium on cavitation inception, pp 2–7
Zurück zum Zitat Blake Jr F (1949) The tensile strength of liquids: a review of the literature. Technical memo no. 9. Technical report, Acoustic Research Laboratory, Harvard University Blake Jr F (1949) The tensile strength of liquids: a review of the literature. Technical memo no. 9. Technical report, Acoustic Research Laboratory, Harvard University
Zurück zum Zitat Brandner P (2018) Microbubbles and cavitation: Microscales to macroscales. In: International cavitation symposium (CAV) 2018 Brandner P (2018) Microbubbles and cavitation: Microscales to macroscales. In: International cavitation symposium (CAV) 2018
Zurück zum Zitat Brandner P, Lecoffre Y, Walker G (2007) Design considerations in the development of a modern cavitation tunnel. In: 16th Australasian fluid mechanics conference Brandner P, Lecoffre Y, Walker G (2007) Design considerations in the development of a modern cavitation tunnel. In: 16th Australasian fluid mechanics conference
Zurück zum Zitat Briançon-Marjollet L, Merle L (1996) Inception, development and noise of a tip vortex cavitation. In: Proceedings of 21st symposium on naval hydrodynamics, pp 851–864 Briançon-Marjollet L, Merle L (1996) Inception, development and noise of a tip vortex cavitation. In: Proceedings of 21st symposium on naval hydrodynamics, pp 851–864
Zurück zum Zitat Ceccio SL, Brennen CE (1991) Observations of the dynamics and acoustics of travelling bubble cavitation. J Fluid Mech 233:633–660 Ceccio SL, Brennen CE (1991) Observations of the dynamics and acoustics of travelling bubble cavitation. J Fluid Mech 233:633–660
Zurück zum Zitat Chang N, Yakushiji R, Ganesh H, Ceccio S (2009) Mechanism and scalability of tip vortex cavitation suppression by water and polymer injection. In: Seventh international symposium on cavitation—Cav2009 vol 149, pp 1–12 Chang N, Yakushiji R, Ganesh H, Ceccio S (2009) Mechanism and scalability of tip vortex cavitation suppression by water and polymer injection. In: Seventh international symposium on cavitation—Cav2009 vol 149, pp 1–12
Zurück zum Zitat Chen L, Zhang L, Peng X, Shao X (2019) Influence of water quality on the tip vortex cavitation inception. Phys Fluids 31(2):023303 Chen L, Zhang L, Peng X, Shao X (2019) Influence of water quality on the tip vortex cavitation inception. Phys Fluids 31(2):023303
Zurück zum Zitat Danov KD, Stanimirova RD, Kralchevsky PA, Marinova KG, Stoyanov SD, Blijdenstein TB, Cox AR, Pelan EG (2016) Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry. Adv Colloid Interface Sci 233:223–239 Danov KD, Stanimirova RD, Kralchevsky PA, Marinova KG, Stoyanov SD, Blijdenstein TB, Cox AR, Pelan EG (2016) Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry. Adv Colloid Interface Sci 233:223–239
Zurück zum Zitat Franc JP, Michel JM (2006) Fundamentals of cavitation. Springer, BerlinMATH Franc JP, Michel JM (2006) Fundamentals of cavitation. Springer, BerlinMATH
Zurück zum Zitat Franklin R (1992) A note on the radius distribution function for microbubbles of gas in water. In: Proceedings of the ASME cavitation and multiphase flow forum, FED-Volume, vol 135, pp 77–85 Franklin R (1992) A note on the radius distribution function for microbubbles of gas in water. In: Proceedings of the ASME cavitation and multiphase flow forum, FED-Volume, vol 135, pp 77–85
Zurück zum Zitat Fruman D, Dugue C (1994) Tip vortex roll-up and cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 633–654 Fruman D, Dugue C (1994) Tip vortex roll-up and cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 633–654
Zurück zum Zitat Gavrilov L (1969) On the size distribution of gas bubbles in water. Sov Phys Acoust 15(1):22–24 Gavrilov L (1969) On the size distribution of gas bubbles in water. Sov Phys Acoust 15(1):22–24
Zurück zum Zitat Gindroz B (1995) Propeller cavitation characteristics: the practical interest of nuclei measurements in test facilities and at sea. In: Proceedings of ASME FED symposium on cavitation Gindroz B (1995) Propeller cavitation characteristics: the practical interest of nuclei measurements in test facilities and at sea. In: Proceedings of ASME FED symposium on cavitation
Zurück zum Zitat Gindroz B, Billet M (1998) Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers. J Fluids Eng 120(1):171–178 Gindroz B, Billet M (1998) Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers. J Fluids Eng 120(1):171–178
Zurück zum Zitat Green S (1988) Tip vortices: single phase and cavitating flow phenomena. PhD thesis, California Institute of Technology Green S (1988) Tip vortices: single phase and cavitating flow phenomena. PhD thesis, California Institute of Technology
Zurück zum Zitat Green S (1991) Correlating single phase flow measurements with observations of trailing vortex cavitation. J Fluids Eng 113(1):125–129 Green S (1991) Correlating single phase flow measurements with observations of trailing vortex cavitation. J Fluids Eng 113(1):125–129
Zurück zum Zitat Holl J (1960) An effect of air content on the occurrence of cavitation. J Basic Eng 82:941–946 Holl J (1960) An effect of air content on the occurrence of cavitation. J Basic Eng 82:941–946
Zurück zum Zitat Hsiao CT, Chahine GL (2005) Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution. J Fluids Eng 127(1):55–65 Hsiao CT, Chahine GL (2005) Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution. J Fluids Eng 127(1):55–65
Zurück zum Zitat Hsiao C, Chahine G (2008) Scaling of tip vortex cavitation inception for a marine open propeller. In: Proceedings of 27th symposium on naval hydrodynamics, Seoul, Korea, pp 5–10 Hsiao C, Chahine G (2008) Scaling of tip vortex cavitation inception for a marine open propeller. In: Proceedings of 27th symposium on naval hydrodynamics, Seoul, Korea, pp 5–10
Zurück zum Zitat Khoo M, Venning J, Pearce B, Brandner P, Lecoffre Y (2016) Development of a cavitation susceptibility meter for nuclei size distribution measurements. In: 20th Australasian fluid mechanics conference Khoo M, Venning J, Pearce B, Brandner P, Lecoffre Y (2016) Development of a cavitation susceptibility meter for nuclei size distribution measurements. In: 20th Australasian fluid mechanics conference
Zurück zum Zitat Khoo M, Venning J, Pearce B, Takahashi K, Mori T, Brandner P (2020) Natural nuclei population dynamics in cavitation tunnels. Exp Fluids 61(2):1–20 Khoo M, Venning J, Pearce B, Takahashi K, Mori T, Brandner P (2020) Natural nuclei population dynamics in cavitation tunnels. Exp Fluids 61(2):1–20
Zurück zum Zitat Laberteaux K, Ceccio S (2001) Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation. J Fluid Mech 431:43–63MATH Laberteaux K, Ceccio S (2001) Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation. J Fluid Mech 431:43–63MATH
Zurück zum Zitat Lecoffre Y (1999) Cavitation bubble trackers. A. A. Balkema, Amsterdam Lecoffre Y (1999) Cavitation bubble trackers. A. A. Balkema, Amsterdam
Zurück zum Zitat McCormick B (1962) On cavitation produced by a vortex trailing from a lifting surface. J Basic Eng 84(3):369–378MathSciNet McCormick B (1962) On cavitation produced by a vortex trailing from a lifting surface. J Basic Eng 84(3):369–378MathSciNet
Zurück zum Zitat Messino D, Sette D, Wanderlingh F (1963) Statistical approach to ultrasonic cavitation. J Acoust Soc Am 35(10):1575–1583 Messino D, Sette D, Wanderlingh F (1963) Statistical approach to ultrasonic cavitation. J Acoust Soc Am 35(10):1575–1583
Zurück zum Zitat Meyer R, Billet M, Holl J (1992) Freestream nuclei and traveling-bubble cavitation. J Fluids Eng 114(4):672–679 Meyer R, Billet M, Holl J (1992) Freestream nuclei and traveling-bubble cavitation. J Fluids Eng 114(4):672–679
Zurück zum Zitat Mørch KA (2000) Cavitation nuclei and bubble formation: a dynamic liquid-solid interface problem. J Fluids Eng 122(3):494–498 Mørch KA (2000) Cavitation nuclei and bubble formation: a dynamic liquid-solid interface problem. J Fluids Eng 122(3):494–498
Zurück zum Zitat O’Hern T, d’Agostino L, Acosta A (1988) Comparison of holographic and Coulter counter measurements of cavitation nuclei in the ocean. J Fluids Eng 110(2):200–207 O’Hern T, d’Agostino L, Acosta A (1988) Comparison of holographic and Coulter counter measurements of cavitation nuclei in the ocean. J Fluids Eng 110(2):200–207
Zurück zum Zitat Oweis G, van der Hout I, Iyer C, Tryggvason G, Ceccio S (2005) Capture and inception of bubbles near line vortices. Phys Fluids 17(2):022105MATH Oweis G, van der Hout I, Iyer C, Tryggvason G, Ceccio S (2005) Capture and inception of bubbles near line vortices. Phys Fluids 17(2):022105MATH
Zurück zum Zitat Pennings P, Westerweel J, Van Terwisga T (2015) Flow field measurement around vortex cavitation. Exp Fluids 56(11):206 Pennings P, Westerweel J, Van Terwisga T (2015) Flow field measurement around vortex cavitation. Exp Fluids 56(11):206
Zurück zum Zitat Randolph K, Dierssen HM, Twardowski M, Cifuentes-Lorenzen A, Zappa CJ (2014) Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. J Geophys Res Oceans 119(2):757–776 Randolph K, Dierssen HM, Twardowski M, Cifuentes-Lorenzen A, Zappa CJ (2014) Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. J Geophys Res Oceans 119(2):757–776
Zurück zum Zitat Schiebe FR (1969) The influence of gas nuclei size distribution on transient cavitation near inception. Technical report, St. Anthony Falls Laboratory Schiebe FR (1969) The influence of gas nuclei size distribution on transient cavitation near inception. Technical report, St. Anthony Falls Laboratory
Zurück zum Zitat Shen Y, Gowing S, Pierce R (1984) Cavitation susceptibility measurements by a venturi. In: ASME international symposium on cavitation inception-1984, New Orleans, LA Shen Y, Gowing S, Pierce R (1984) Cavitation susceptibility measurements by a venturi. In: ASME international symposium on cavitation inception-1984, New Orleans, LA
Zurück zum Zitat Shen YT, Jessup S, Gowing S (2009) Tip vortex cavitation inception scaling for high Reynolds number application. In: ASME/JSME 2003 4th joint fluids summer engineering conference. American Society of Mechanical Engineers: Digital Collection, pp 233–239 Shen YT, Jessup S, Gowing S (2009) Tip vortex cavitation inception scaling for high Reynolds number application. In: ASME/JSME 2003 4th joint fluids summer engineering conference. American Society of Mechanical Engineers: Digital Collection, pp 233–239
Zurück zum Zitat Sinding KM, Hanson DR, Krane MH, Koncoski J (2018) Insight into tip vortex cavitation using velocity field measurements. In: Proceedings of 10th international symposium on cavitation (CAV2018). ASME Press Sinding KM, Hanson DR, Krane MH, Koncoski J (2018) Insight into tip vortex cavitation using velocity field measurements. In: Proceedings of 10th international symposium on cavitation (CAV2018). ASME Press
Zurück zum Zitat Song M, Xu L, Peng X, Tang D (2017) An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int J Multiph Flow 90:79–87 Song M, Xu L, Peng X, Tang D (2017) An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int J Multiph Flow 90:79–87
Zurück zum Zitat Venning J, Khoo M, Pearce B, Brandner P (2018) Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities. Exp Fluids 59(4):71 Venning J, Khoo M, Pearce B, Brandner P (2018) Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities. Exp Fluids 59(4):71
Zurück zum Zitat Yakushiji R (2009) Mechanism of tip vortex cavitation suppression by polymer and water injection. PhD thesis, The University of Michigan Yakushiji R (2009) Mechanism of tip vortex cavitation suppression by polymer and water injection. PhD thesis, The University of Michigan
Zurück zum Zitat Zhang LX, Chen LY, Peng XX, Shao XM (2017) The effect of water quality on tip vortex cavitation inception. J Hydrodyn 29(6):954–961 Zhang LX, Chen LY, Peng XX, Shao XM (2017) The effect of water quality on tip vortex cavitation inception. J Hydrodyn 29(6):954–961
Metadaten
Titel
Statistical aspects of tip vortex cavitation inception and desinence in a nuclei deplete flow
verfasst von
M. T. Khoo
J. A. Venning
B. W. Pearce
P. A. Brandner
Publikationsdatum
01.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 6/2020
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-02967-x

Weitere Artikel der Ausgabe 6/2020

Experiments in Fluids 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.