Skip to main content
Top
Published in: Journal of Nanoparticle Research 1/2011

01-01-2011 | Research Paper

Single enzyme nanoparticle for biomimetic CO2 sequestration

Authors: Renu Yadav, Nitin Labhsetwar, Swati Kotwal, Sadhana Rayalu

Published in: Journal of Nanoparticle Research | Issue 1/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoparticle technology is being increasingly used in environmental sciences. We prepared single enzyme nanoparticle (SEN) by modifying the surface of carbonic anhydrase (CA) with a thin layer of organic/inorganic hybrid polymer. SEN-CA appears to be improving the stability of free enzyme. CA, as ubiquitously found enzyme, is involved in gaseous CO2 sequestration and is being looked as a promising candidate for combating global warming. We report here physical characterization of SEN-CA using transmission electron microscope (TEM), Fourier-transform infrared analysis (FTIR), X-ray diffraction analysis (XRD), and energy dispersive X-ray (EDX). Average size of SEN-CA particles appears to be in the range of 70–80 nm. We also report the effect of SEN formation on the kinetic parameters of free CA such as Michaelis–Menten constant (K m), maximum reaction velocity (V max), and storage stability of free CA and SEN-CA. The V max of SEN-CA (0.02857 mmol/min/mg) and free enzyme (0.02029 mmol/min/mg) is almost similar. K m has decreased from 6.143 mM for SEN-CA to 1.252 mM for free CA. The stabilization of CA by SEN formation results in improved the half-life period (up to 100 days). The formation of carbonate was substantiated by using gas chromatography (GC). The conversion of CO2 to carbonate was 61 mg of CaCO3/mg of CA and 20.8 mg of CaCO3/mg of CA using SEN-CA and free CA, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Armstrong JM, Myers DV, Verporte JA, Edsall JT (1966) Purification and properties of human erythrocytes carbonic anhydrase. J Biol Chem 241:5137–5149 Armstrong JM, Myers DV, Verporte JA, Edsall JT (1966) Purification and properties of human erythrocytes carbonic anhydrase. J Biol Chem 241:5137–5149
go back to reference Bhattacharya S, Schiavone M, Chakrabarti S, Bhattacharya SK (2003) CO2 hydration by immobilized carbonic anhydrase. Biotechnol Appl Biochem 38:111–117CrossRef Bhattacharya S, Schiavone M, Chakrabarti S, Bhattacharya SK (2003) CO2 hydration by immobilized carbonic anhydrase. Biotechnol Appl Biochem 38:111–117CrossRef
go back to reference Bhattacharya S, Nayak A, Schiavone M, Bhattacharya SK (2004) Solubilization and concentration of carbon dioxide: novel spray reactors with immobilized carbonic anhydrase. Biotechnol Bioeng 86:37–46CrossRef Bhattacharya S, Nayak A, Schiavone M, Bhattacharya SK (2004) Solubilization and concentration of carbon dioxide: novel spray reactors with immobilized carbonic anhydrase. Biotechnol Bioeng 86:37–46CrossRef
go back to reference Bond GM, Egeland G, Brandvold DK, Medina MG, Simsek FA, Stringer J (1999a) Enzymatic catalysis and CO2 sequestration. World Resour Rev 11(4):603–618 Bond GM, Egeland G, Brandvold DK, Medina MG, Simsek FA, Stringer J (1999a) Enzymatic catalysis and CO2 sequestration. World Resour Rev 11(4):603–618
go back to reference Bond GM, Egeland G, Brandvold DK, Medina MG, Stringer J (1999b) CO2 sequestration via a biomimetic approach. In: EPD congress: proceedings of sessions and symposia, pp 763–781 Bond GM, Egeland G, Brandvold DK, Medina MG, Stringer J (1999b) CO2 sequestration via a biomimetic approach. In: EPD congress: proceedings of sessions and symposia, pp 763–781
go back to reference Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina MG, Egeland G (2001a) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels 15:309–316CrossRef Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina MG, Egeland G (2001a) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels 15:309–316CrossRef
go back to reference Bond GM, Medina MG, Stringer J (2001b) A biomimetic CO2 scrubber for safe and permanent CO2 sequestration. In: Eighteenth annual international Pittsburgh coal conference proceedings, 3–7 Dec 2001, Newcastle, NSW, Australia Bond GM, Medina MG, Stringer J (2001b) A biomimetic CO2 scrubber for safe and permanent CO2 sequestration. In: Eighteenth annual international Pittsburgh coal conference proceedings, 3–7 Dec 2001, Newcastle, NSW, Australia
go back to reference Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45CrossRef Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45CrossRef
go back to reference DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 10(4):324–330CrossRef DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 10(4):324–330CrossRef
go back to reference Drake F (2000) Global warming: the science of climate change. Arnold, London, p 273 Drake F (2000) Global warming: the science of climate change. Arnold, London, p 273
go back to reference Duran N, Esposito E (2000) Potential application of oxidative enzymes and phenoloxides-like compounds in waste water soil treatment: a review. Appl Catal B Environ 28:83–99CrossRef Duran N, Esposito E (2000) Potential application of oxidative enzymes and phenoloxides-like compounds in waste water soil treatment: a review. Appl Catal B Environ 28:83–99CrossRef
go back to reference Govardhan CP (1999) Crosslinking of enzymes for improved stability and performance. Curr Opin Biotechnol 10:331–335CrossRef Govardhan CP (1999) Crosslinking of enzymes for improved stability and performance. Curr Opin Biotechnol 10:331–335CrossRef
go back to reference Guilbault GG (1984) Analytical uses of immobilized enzymes, enzymology in the practice of cells and enzymes: a practical approach. IRL Press Ltd., Oxford Guilbault GG (1984) Analytical uses of immobilized enzymes, enzymology in the practice of cells and enzymes: a practical approach. IRL Press Ltd., Oxford
go back to reference Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3(9):1219–1222CrossRef Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3(9):1219–1222CrossRef
go back to reference Kim J, Kosto TJ, Manimala JC, Nauman EB, Dordick JS (2004) Enzyme-polymer composites with high biocatalytic activity and stability. In: American Chemical Society meeting 228, vol 228, no. Pt. 2. American Chemical Society, Washington, DC, p Poly 478 Kim J, Kosto TJ, Manimala JC, Nauman EB, Dordick JS (2004) Enzyme-polymer composites with high biocatalytic activity and stability. In: American Chemical Society meeting 228, vol 228, no. Pt. 2. American Chemical Society, Washington, DC, p Poly 478
go back to reference Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH, Gu MB (2005a) Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers. Nanotechnology 16(7):S382–S388CrossRef Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH, Gu MB (2005a) Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers. Nanotechnology 16(7):S382–S388CrossRef
go back to reference Kim J, Lee J, Na HB, Kim BC, Youn J, Kwak JH, Moon K, Lee E, Kim J, Park J, Dohnalkova A, Park HG, Gu MB, Chang HN, Grate JW, Hyeon T (2005b) A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 1(12):1203–1207CrossRef Kim J, Lee J, Na HB, Kim BC, Youn J, Kwak JH, Moon K, Lee E, Kim J, Park J, Dohnalkova A, Park HG, Gu MB, Chang HN, Grate JW, Hyeon T (2005b) A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 1(12):1203–1207CrossRef
go back to reference Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026CrossRef Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026CrossRef
go back to reference Kim J, Jia H, Lee C, Chung S-W, Kwak J-H, Shin Y, Dohnalkova A, Kim B-G, Wang P, Grate JW (2006b) Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme Microb Technol 39(3):474–480CrossRef Kim J, Jia H, Lee C, Chung S-W, Kwak J-H, Shin Y, Dohnalkova A, Kim B-G, Wang P, Grate JW (2006b) Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme Microb Technol 39(3):474–480CrossRef
go back to reference Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240CrossRef Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240CrossRef
go back to reference Lee J, Lee D, Oh E, Kim J, Jin S, Kim HS, Hwang Y, Kwak JH, Park JG, Shin CH, Kim J, Hyeon T (2005a) Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew Chem Int Ed 44(45):7427–7432CrossRef Lee J, Lee D, Oh E, Kim J, Jin S, Kim HS, Hwang Y, Kwak JH, Park JG, Shin CH, Kim J, Hyeon T (2005a) Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew Chem Int Ed 44(45):7427–7432CrossRef
go back to reference Lee J, Kim J, Jia H, Kim MI, Kwak JH, Jin S, Dohnalkova A, Park HG, Chang HN, Wang P, Grate JW, Hyeon T (2005b) Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1(7):744–753CrossRef Lee J, Kim J, Jia H, Kim MI, Kwak JH, Jin S, Dohnalkova A, Park HG, Chang HN, Wang P, Grate JW, Hyeon T (2005b) Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1(7):744–753CrossRef
go back to reference Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666CrossRef Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666CrossRef
go back to reference Liu N, Bond GM, Abel A, McPherson BJ, Stringer J (2005) Biomimetic sequestration of CO2 in produced waters and other brines. Fuel Process Technol 86:1615–1625CrossRef Liu N, Bond GM, Abel A, McPherson BJ, Stringer J (2005) Biomimetic sequestration of CO2 in produced waters and other brines. Fuel Process Technol 86:1615–1625CrossRef
go back to reference Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13(33):R673–R691CrossRef Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13(33):R673–R691CrossRef
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
go back to reference Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46(3):921–926CrossRef Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46(3):921–926CrossRef
go back to reference Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11(3):88–95CrossRef Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11(3):88–95CrossRef
go back to reference Schmid A, Dordick IS, Hauer B, Kiener A, Wubbolts M, Witholts B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268CrossRef Schmid A, Dordick IS, Hauer B, Kiener A, Wubbolts M, Witholts B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268CrossRef
go back to reference Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. Top Curr Chem 200:95–126CrossRef Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. Top Curr Chem 200:95–126CrossRef
go back to reference Yan M, Liu Z, Lu D, Liu Z (2007) Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 8(2):560–565CrossRef Yan M, Liu Z, Lu D, Liu Z (2007) Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 8(2):560–565CrossRef
Metadata
Title
Single enzyme nanoparticle for biomimetic CO2 sequestration
Authors
Renu Yadav
Nitin Labhsetwar
Swati Kotwal
Sadhana Rayalu
Publication date
01-01-2011
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 1/2011
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-0026-z

Other articles of this Issue 1/2011

Journal of Nanoparticle Research 1/2011 Go to the issue

Premium Partners