Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

21-03-2018 | Original Article

Single-label and multi-label conceptor classifiers in pre-trained neural networks

Authors: Guangwu Qian, Lei Zhang, Yan Wang

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Training large neural network models from scratch is not feasible due to over-fitting on small datasets and too much time consumed on large datasets. To address this, transfer learning, namely utilizing the feature extracting capacity learned by large models, becomes a hot spot in neural network community. At the classifying stage of pre-trained neural network model, either a linear SVM classifier or a Softmax classifier is employed and that is the only trained part of the whole model. In this paper, inspired by transfer learning, we propose a classifier based on conceptors called Multi-label Conceptor Classifier (MCC) to deal with multi-label classification in pre-trained neural networks. When no multi-label sample exists, MCC equates to Fast Conceptor Classifier, a fast single-label classifier proposed in our previous work, thus being applicable to single-label classification. Moreover, by introducing a random search algorithm, we further improve the performance of MCC on single-label datasets Caltech-101 and Caltech-256, where it achieves state-of-the-art results. Also, its evaluations with pre-trained rather than fine-tuning neural networks are investigated on multi-label dataset PASCAL VOC-2007, where it achieves comparable results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory, ACM, pp 144–152 Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory, ACM, pp 144–152
2.
go back to reference Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886CrossRef Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886CrossRef
3.
go back to reference Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRef Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRef
4.
go back to reference Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:​1405.​3531
6.
go back to reference Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML, pp 647–655 Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML, pp 647–655
8.
go back to reference Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70CrossRef Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70CrossRef
9.
go back to reference Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587 Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587
10.
go back to reference Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. California Institute of Technology Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. California Institute of Technology
11.
go back to reference Guo Q, Jia J, Shen G, Zhang L, Cai L, Yi Z (2016) Learning robust uniform features for cross-media social data by using cross autoencoders. Knowl-Based Syst 102:64–75CrossRef Guo Q, Jia J, Shen G, Zhang L, Cai L, Yi Z (2016) Learning robust uniform features for cross-media social data by using cross autoencoders. Knowl-Based Syst 102:64–75CrossRef
12.
go back to reference He K, Zhang X, Ren S, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: European conference on computer vision, Springer, pp 346–361 He K, Zhang X, Ren S, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: European conference on computer vision, Springer, pp 346–361
13.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
14.
go back to reference Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef
15.
go back to reference Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507MathSciNetCrossRef Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507MathSciNetCrossRef
16.
go back to reference Holmes M, Gray A, Isbell C (2007) Fast svd for large-scale matrices. In: Workshop on efficient machine learning at NIPS, vol 58, pp 249–252 Holmes M, Gray A, Isbell C (2007) Fast svd for large-scale matrices. In: Workshop on efficient machine learning at NIPS, vol 58, pp 249–252
18.
go back to reference Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80CrossRef Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80CrossRef
19.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
20.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
21.
go back to reference Niu XN, Yang C, Wang H, Wang Y (2017) Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Appl Therm Eng 111:1353–1364CrossRef Niu XN, Yang C, Wang H, Wang Y (2017) Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Appl Therm Eng 111:1353–1364CrossRef
22.
go back to reference Perronnin F, Sánchez J, Mensink T (2010) Improving the Fisher kernel for large-scale image classification. Springer, Berlin, pp 143–156 Perronnin F, Sánchez J, Mensink T (2010) Improving the Fisher kernel for large-scale image classification. Springer, Berlin, pp 143–156
23.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252MathSciNetCrossRef
25.
go back to reference Qian G, Zhang L, Zhang Q (2017) Fast conceptor classifier in pre-trained neural networks for visual recognition. Springer International Publishing, Cham, pp 290–298 Qian G, Zhang L, Zhang Q (2017) Fast conceptor classifier in pre-trained neural networks for visual recognition. Springer International Publishing, Cham, pp 290–298
26.
go back to reference Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2–3):135–168CrossRef Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2–3):135–168CrossRef
27.
go back to reference Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:​1312.​6229
28.
go back to reference Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 806–813 Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 806–813
29.
30.
go back to reference Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning (ICML-13), pp 1058–1066 Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning (ICML-13), pp 1058–1066
32.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, Springer, pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, Springer, pp 818–833
33.
go back to reference Zhang H, Li J, Ji Y, Yue H (2017) Understanding subtitles by character-level sequence-to-sequence learning. IEEE Trans Ind Inf 13(2):616–624CrossRef Zhang H, Li J, Ji Y, Yue H (2017) Understanding subtitles by character-level sequence-to-sequence learning. IEEE Trans Ind Inf 13(2):616–624CrossRef
34.
go back to reference Zhang L, Yi Z (2011) Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function. IEEE Trans Neural Netw 22(7):1021–1031CrossRef Zhang L, Yi Z (2011) Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function. IEEE Trans Neural Netw 22(7):1021–1031CrossRef
35.
go back to reference Zhang L, Yi Z, Yu J (2008) Multiperiodicity and attractivity of delayed recurrent neural networks with unsaturating piecewise linear transfer functions. IEEE Trans Neural Netw 19(1):158–167CrossRef Zhang L, Yi Z, Yu J (2008) Multiperiodicity and attractivity of delayed recurrent neural networks with unsaturating piecewise linear transfer functions. IEEE Trans Neural Netw 19(1):158–167CrossRef
36.
go back to reference Zhang L, Yi Z, Zhang SL, Heng PA (2009) Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks. IEEE Trans Autom Control 54(6):1341–1347MathSciNetCrossRef Zhang L, Yi Z, Zhang SL, Heng PA (2009) Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks. IEEE Trans Autom Control 54(6):1341–1347MathSciNetCrossRef
Metadata
Title
Single-label and multi-label conceptor classifiers in pre-trained neural networks
Authors
Guangwu Qian
Lei Zhang
Yan Wang
Publication date
21-03-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3432-2

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner