Skip to main content
Top
Published in: Journal of Nanoparticle Research 5/2010

01-06-2010 | Research paper

Size-dependent melting of nanocrystals: a self-consistent statistical approach

Author: Victoria V. Lubashenko

Published in: Journal of Nanoparticle Research | Issue 5/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A self-consistent statistical method is used to describe size effects on melting of free nanocrystals. The melting transition is assumed to be directly related to evolution of high-temperature instability of the phonon subsystem of the crystal, caused by strong anharmonicity of atomic vibrations. We show that depression of the melting temperature of small free particles is mainly due to presence of surface atoms which are bound to smaller numbers of atoms than those of the interior. The melting temperatures of spherical nanocrystals of Ar and Au were calculated as functions of the inverse of their radii and compared with experimental and molecular dynamics data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alavi S, Thompson DL (2006) Molecular dynamics simulation of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523CrossRefPubMed Alavi S, Thompson DL (2006) Molecular dynamics simulation of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523CrossRefPubMed
go back to reference Beaglehole D (1991) Surface melting of small particles, and the effects of surface impurities. J Cryst Growth 112:663–669CrossRefADS Beaglehole D (1991) Surface melting of small particles, and the effects of surface impurities. J Cryst Growth 112:663–669CrossRefADS
go back to reference Ben David T, Lereah Y, Deutscher G, Kofman R, Cheyssac P (1995) Solid–liquid trtansition in ultra-fine lead particles. Phil Mag A 71:1135–1143CrossRefADS Ben David T, Lereah Y, Deutscher G, Kofman R, Cheyssac P (1995) Solid–liquid trtansition in ultra-fine lead particles. Phil Mag A 71:1135–1143CrossRefADS
go back to reference Böttger H (1983) Principles of the theory of lattice dynamics. Academie-Verlag, BerlinMATH Böttger H (1983) Principles of the theory of lattice dynamics. Academie-Verlag, BerlinMATH
go back to reference Buffat Ph, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRefADS Buffat Ph, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRefADS
go back to reference Celestini F, Pellenq RJ-M, Bordarier P, Rousseau B (1996) Melting of Lennard-Jones clusters in confined geometries. Z Phys D 37:49–53CrossRefADS Celestini F, Pellenq RJ-M, Bordarier P, Rousseau B (1996) Melting of Lennard-Jones clusters in confined geometries. Z Phys D 37:49–53CrossRefADS
go back to reference Choquard PF (1967) The anharmonic crystal. Benjamin, New York Choquard PF (1967) The anharmonic crystal. Benjamin, New York
go back to reference Couchman PR (1979) The Lindemann hypothesis and the size-dependence of melting temperature. II. Phil Mag A 40:637–643CrossRefADS Couchman PR (1979) The Lindemann hypothesis and the size-dependence of melting temperature. II. Phil Mag A 40:637–643CrossRefADS
go back to reference Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature (London) 269:481–483CrossRefADS Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature (London) 269:481–483CrossRefADS
go back to reference Couchman PR, Ryan CL (1978) The Lindemann hypothesis and the size-dependence of melting temperature. Phil Mag A 37:369–373CrossRefADS Couchman PR, Ryan CL (1978) The Lindemann hypothesis and the size-dependence of melting temperature. Phil Mag A 37:369–373CrossRefADS
go back to reference Delogu F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys Rev B 72:205418CrossRefADS Delogu F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys Rev B 72:205418CrossRefADS
go back to reference Ercolessi F, Andreoni W, Tosatti E (1991) Melting of small gold particles: mechanism and size effect. Phys Rev Lett 66:911–914CrossRefPubMedADS Ercolessi F, Andreoni W, Tosatti E (1991) Melting of small gold particles: mechanism and size effect. Phys Rev Lett 66:911–914CrossRefPubMedADS
go back to reference Hanszen K-J (1960) Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen. Ein Beitrag zur Thermodynamik der Grenzflächen. Z Phys 157:523–553CrossRefADS Hanszen K-J (1960) Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen. Ein Beitrag zur Thermodynamik der Grenzflächen. Z Phys 157:523–553CrossRefADS
go back to reference Hoshino K, Shimamura S (1979) A simple model for the melting of fine particles. Phil Mag A 40:137–141CrossRefADS Hoshino K, Shimamura S (1979) A simple model for the melting of fine particles. Phil Mag A 40:137–141CrossRefADS
go back to reference Karasevskii AI, Lubashenko VV (2002) Binary distribution functions of atoms of simple crystals. Phys Rev B 66:054302CrossRefADS Karasevskii AI, Lubashenko VV (2002) Binary distribution functions of atoms of simple crystals. Phys Rev B 66:054302CrossRefADS
go back to reference Karasevskii AI, Lubashenko VV (2004) Calculation of thermodynamic properties of Cu and Ag using a self-consistent statistical method. Phys Stat Sol (b) 241:1274–1280CrossRefADS Karasevskii AI, Lubashenko VV (2004) Calculation of thermodynamic properties of Cu and Ag using a self-consistent statistical method. Phys Stat Sol (b) 241:1274–1280CrossRefADS
go back to reference Karasevskii AI, Lubashenko VV (2005) Role of anharmonicity of atomic vibrations in formation of vacancies in the rare gas crystals. Phys Rev B 71:012107CrossRefADS Karasevskii AI, Lubashenko VV (2005) Role of anharmonicity of atomic vibrations in formation of vacancies in the rare gas crystals. Phys Rev B 71:012107CrossRefADS
go back to reference Kittel C (1986) Introduction to solid state physics. Wiley, New York Kittel C (1986) Introduction to solid state physics. Wiley, New York
go back to reference Lindemann FA (1910) Über die Berechnung molekularer Eigenfrequenzen. Z Phys 11:609–612 Lindemann FA (1910) Über die Berechnung molekularer Eigenfrequenzen. Z Phys 11:609–612
go back to reference Maradudin AA, Flinn PA, Coldwell-Horsfall RA (1961) Anharmonic contributions to vibrational thermodynamical properties of solids. Part I. General formulation and application to the linear chain. Ann Phys (NY) 15:337–359CrossRefMathSciNetADS Maradudin AA, Flinn PA, Coldwell-Horsfall RA (1961) Anharmonic contributions to vibrational thermodynamical properties of solids. Part I. General formulation and application to the linear chain. Ann Phys (NY) 15:337–359CrossRefMathSciNetADS
go back to reference Nanda KK (1998) Size-dependent melting of small particles: a classical approach. Eur J Phys 19:471–472CrossRef Nanda KK (1998) Size-dependent melting of small particles: a classical approach. Eur J Phys 19:471–472CrossRef
go back to reference Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208CrossRefADS Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208CrossRefADS
go back to reference Nishiguchi N, Sakuma T (1981) Vibrational spectum and specific heat of fine particles. Solid State Commun 38:1073–1077CrossRefADS Nishiguchi N, Sakuma T (1981) Vibrational spectum and specific heat of fine particles. Solid State Commun 38:1073–1077CrossRefADS
go back to reference Olson EA, Efremov MYu, Zhang M, Allen LH (2005) Size-dependent melting of Bi nanoparticles. J Appl Phys 97:034304CrossRefADS Olson EA, Efremov MYu, Zhang M, Allen LH (2005) Size-dependent melting of Bi nanoparticles. J Appl Phys 97:034304CrossRefADS
go back to reference Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von den Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35 Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von den Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35
go back to reference Qi Y, Çağin T, Johnson WL, Goddard III WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394CrossRefADS Qi Y, Çağin T, Johnson WL, Goddard III WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394CrossRefADS
go back to reference Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851-855CrossRefADS Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851-855CrossRefADS
go back to reference Saka H, Nishikawa Y, Imura T (1988) Melting temperature of In particles embedded in an Al matrix. Phil Mag A 57:895–906CrossRefADS Saka H, Nishikawa Y, Imura T (1988) Melting temperature of In particles embedded in an Al matrix. Phil Mag A 57:895–906CrossRefADS
go back to reference Sambles JR (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc R Soc Lond A 324:339–351CrossRefADS Sambles JR (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc R Soc Lond A 324:339–351CrossRefADS
go back to reference Shandiz MA, Safaei A, Sanjabi S, Barber ZH (2007) Modeling size dependence of melting temperature of metallic nanoparticles. J Phys Chem Solids 68:1396–1399CrossRefADS Shandiz MA, Safaei A, Sanjabi S, Barber ZH (2007) Modeling size dependence of melting temperature of metallic nanoparticles. J Phys Chem Solids 68:1396–1399CrossRefADS
go back to reference Skripov VP, Koverda V P, Skokov V N (1981) Size effect on melting of small particles. Phys Stat Sol (a) 66:109–118CrossRefADS Skripov VP, Koverda V P, Skokov V N (1981) Size effect on melting of small particles. Phys Stat Sol (a) 66:109–118CrossRefADS
go back to reference Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359–363CrossRefADS Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359–363CrossRefADS
go back to reference Tamura A, Nigeta K, Ichinokawa T (1982) Lattice vibrations and specific heat of a small particle. J Phys C 15:4975–4991CrossRefADS Tamura A, Nigeta K, Ichinokawa T (1982) Lattice vibrations and specific heat of a small particle. J Phys C 15:4975–4991CrossRefADS
go back to reference Wautelet M (1990) Size effect on the melting (or disordering) temperature of small particles. Solid State Commun 74:1237–1239CrossRefADS Wautelet M (1990) Size effect on the melting (or disordering) temperature of small particles. Solid State Commun 74:1237–1239CrossRefADS
go back to reference Yang CC, Li S (2007) Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Phys Rev B 75:165413CrossRefADS Yang CC, Li S (2007) Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Phys Rev B 75:165413CrossRefADS
go back to reference Zhang L, Jin ZH, Zhang LH, Sui ML, Lu K (2000a) Superheating of confined Pb thin films. Phys Rev Lett 85:1484–1487CrossRefPubMedADS Zhang L, Jin ZH, Zhang LH, Sui ML, Lu K (2000a) Superheating of confined Pb thin films. Phys Rev Lett 85:1484–1487CrossRefPubMedADS
go back to reference Zhang Z, Li JC, Jiang Q J (2000b) Modelling for size-dependent and dimension-dependent melting of nanocrystals. Phys D 33:2653–2656CrossRefADS Zhang Z, Li JC, Jiang Q J (2000b) Modelling for size-dependent and dimension-dependent melting of nanocrystals. Phys D 33:2653–2656CrossRefADS
Metadata
Title
Size-dependent melting of nanocrystals: a self-consistent statistical approach
Author
Victoria V. Lubashenko
Publication date
01-06-2010
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 5/2010
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9743-6

Other articles of this Issue 5/2010

Journal of Nanoparticle Research 5/2010 Go to the issue

Premium Partners