Skip to main content
Top
Published in: Archive of Applied Mechanics 10/2018

07-06-2018 | Original

Size-dependent stress intensity factors in a gradient elastic double cantilever beam with surface effects

Authors: R. P. Joseph, B. Wang, B. Samali

Published in: Archive of Applied Mechanics | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, the size-dependent stress intensity factors in an elastic double cantilever beam (DCB) are obtained using strain gradient theory. The surface effects are included, while the DCB is assumed to undergo large deformation. Both cracked and uncracked parts (root effect) of the DCB are incorporated in modeling and analyses. The Variational principle is employed to obtain the governing equation and the corresponding boundary conditions. The deflections along the beam axis and stress intensity factors are obtained and plotted. Results exhibit large deformation to be influential for slender beams at small scale. Strain gradient effect tends to increase beam stiffness though reverse holds true for the root effect of the DCB. These effects on structure stiffness are conspicuous when the beam thickness is less than the material characteristic length. Due to positive surface residual stress, beam exhibits less stiff behavior in comparison with the negative surface residual stress. This softening behavior may be credited to the sign of curvature that causes an additional distributed load and alters beam stiffness. It is shown that even with the root effect, negative surface residual stress causes the DCB to display stiffer response by lowering the stress intensity factors and vice versa.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reeder, J.R., Crews Jr., J.: Nonlinear analysis and redesign of the mixed-mode bending delamination test (1991) Reeder, J.R., Crews Jr., J.: Nonlinear analysis and redesign of the mixed-mode bending delamination test (1991)
2.
go back to reference Wang, K., Wang, B.: Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. Eur. J. Mech. A Solids 56, 12–18 (2016)MathSciNetCrossRef Wang, K., Wang, B.: Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. Eur. J. Mech. A Solids 56, 12–18 (2016)MathSciNetCrossRef
3.
go back to reference Anderson, T., Nayfeh, A., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. Vib. Acoust. 118(1), 21–27 (1996)CrossRef Anderson, T., Nayfeh, A., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. Vib. Acoust. 118(1), 21–27 (1996)CrossRef
4.
go back to reference Jia, X., Yang, J., Kitipornchai, S., Lim, C.W.: Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Smart Mater. Struct. 19(11), 115028 (2010)CrossRef Jia, X., Yang, J., Kitipornchai, S., Lim, C.W.: Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Smart Mater. Struct. 19(11), 115028 (2010)CrossRef
5.
go back to reference Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218(1–2), 161–174 (2011)CrossRef Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218(1–2), 161–174 (2011)CrossRef
6.
go back to reference Giannakopoulos, A., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44(10), 3440–3451 (2007)CrossRef Giannakopoulos, A., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44(10), 3440–3451 (2007)CrossRef
7.
go back to reference Stamoulis, K., Giannakopoulos, A.: A study of size effects and length scales in fracture and fatigue of metals by second gradient modelling. Fatigue Fract. Eng. Mater. Struct. 35(9), 852–860 (2012)CrossRef Stamoulis, K., Giannakopoulos, A.: A study of size effects and length scales in fracture and fatigue of metals by second gradient modelling. Fatigue Fract. Eng. Mater. Struct. 35(9), 852–860 (2012)CrossRef
8.
go back to reference Devitt, D., Schapery, R., Bradley, W.: A method for determining the mode I delamination fracture toughness of elastic and viscoelastic composite materials. J. Compos. Mater. 14, 270–285 (1980) Devitt, D., Schapery, R., Bradley, W.: A method for determining the mode I delamination fracture toughness of elastic and viscoelastic composite materials. J. Compos. Mater. 14, 270–285 (1980)
9.
go back to reference Williams, J.: Large displacement and end block effects in the ’DCB’ interlaminar test in modes I and II. J. Compos. Mater. 21(4), 330–347 (1987)CrossRef Williams, J.: Large displacement and end block effects in the ’DCB’ interlaminar test in modes I and II. J. Compos. Mater. 21(4), 330–347 (1987)CrossRef
10.
go back to reference Togun, N.: Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation. Bound. Value Probl. 2016(1), 1–14 (2016)MathSciNetCrossRef Togun, N.: Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation. Bound. Value Probl. 2016(1), 1–14 (2016)MathSciNetCrossRef
11.
go back to reference Wang, B., Hoffman, M., Yu, A.: Buckling analysis of embedded nanotubes using gradient continuum theory. Mech. Mater. 45, 52–60 (2012)CrossRef Wang, B., Hoffman, M., Yu, A.: Buckling analysis of embedded nanotubes using gradient continuum theory. Mech. Mater. 45, 52–60 (2012)CrossRef
12.
go back to reference Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)CrossRef Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)CrossRef
13.
go back to reference Ru, C., Aifantis, E.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1–4), 59–68 (1993)MathSciNetCrossRef Ru, C., Aifantis, E.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1–4), 59–68 (1993)MathSciNetCrossRef
14.
go back to reference Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic and Professional, Glasgow (1995) Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic and Professional, Glasgow (1995)
15.
go back to reference Joseph, R.P., Wang, B., Samali, B.: Size effects on double cantilever beam fracture mechanics specimen based on strain gradient theory. Eng. Fract. Mech. 169, 309–320 (2017)CrossRef Joseph, R.P., Wang, B., Samali, B.: Size effects on double cantilever beam fracture mechanics specimen based on strain gradient theory. Eng. Fract. Mech. 169, 309–320 (2017)CrossRef
17.
go back to reference Aifantis, E.: Chapter one-internal length gradient (ILG) material mechanics across scales and disciplines. Adv. Appl. Math. 49, 1–110 (2016) Aifantis, E.: Chapter one-internal length gradient (ILG) material mechanics across scales and disciplines. Adv. Appl. Math. 49, 1–110 (2016)
18.
go back to reference Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)MathSciNetCrossRef Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)MathSciNetCrossRef
19.
go back to reference Streitz, F., Cammarata, R., Sieradzki, K.: Surface-stress effects on elastic properties. I. Thin metal films. Phys. Rev. B 49(15), 10699 (1994)CrossRef Streitz, F., Cammarata, R., Sieradzki, K.: Surface-stress effects on elastic properties. I. Thin metal films. Phys. Rev. B 49(15), 10699 (1994)CrossRef
20.
go back to reference Fischer, F., Waitz, T., Vollath, D., Simha, N.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53(3), 481–527 (2008)CrossRef Fischer, F., Waitz, T., Vollath, D., Simha, N.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53(3), 481–527 (2008)CrossRef
21.
go back to reference Cahn, J.W.: Thermodynamics of Solid and Fluid Surfaces. In: Carter, W.C., Johnson, W.C. (eds.) The Selected Works of John W. Cahn, pp. 377–378. The Minerals, Metals & Materials Society, Pennsylvania (1998) Cahn, J.W.: Thermodynamics of Solid and Fluid Surfaces. In: Carter, W.C., Johnson, W.C. (eds.) The Selected Works of John W. Cahn, pp. 377–378. The Minerals, Metals & Materials Society, Pennsylvania (1998)
22.
go back to reference Cammarata, R.: Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237(2), 180–184 (1997)CrossRef Cammarata, R.: Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237(2), 180–184 (1997)CrossRef
23.
go back to reference Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)CrossRef Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)CrossRef
24.
go back to reference Fried, E., Gurtin, M.E.: The role of the configurational force balance in the nonequilibrium epitaxy of films. J. Mech. Phys. Solids 51(3), 487–517 (2003)MathSciNetCrossRef Fried, E., Gurtin, M.E.: The role of the configurational force balance in the nonequilibrium epitaxy of films. J. Mech. Phys. Solids 51(3), 487–517 (2003)MathSciNetCrossRef
25.
go back to reference Wang, B., Wang, K.: Effect of surface residual stress on the fracture of double cantilever beam fracture toughness specimen. J. Appl. Phys. 113(15), 153502 (2013)CrossRef Wang, B., Wang, K.: Effect of surface residual stress on the fracture of double cantilever beam fracture toughness specimen. J. Appl. Phys. 113(15), 153502 (2013)CrossRef
26.
go back to reference He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8(7), 1798–1802 (2008)CrossRef He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8(7), 1798–1802 (2008)CrossRef
27.
go back to reference Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)CrossRef Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)CrossRef
28.
go back to reference Jammes, M., Mogilevskaya, S.G., Crouch, S.L.: Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Eng. Anal. Bound. Elem. 33(2), 233–248 (2009)MathSciNetCrossRef Jammes, M., Mogilevskaya, S.G., Crouch, S.L.: Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Eng. Anal. Bound. Elem. 33(2), 233–248 (2009)MathSciNetCrossRef
29.
go back to reference Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28(5), 926–934 (2009)CrossRef Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28(5), 926–934 (2009)CrossRef
30.
go back to reference Luo, J., Xiao, Z.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47(9), 883–893 (2009)CrossRef Luo, J., Xiao, Z.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47(9), 883–893 (2009)CrossRef
31.
go back to reference On, B.B., Altus, E., Tadmor, E.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47(9), 1243–1252 (2010)CrossRef On, B.B., Altus, E., Tadmor, E.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47(9), 1243–1252 (2010)CrossRef
32.
go back to reference Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90(23), 231904 (2007)CrossRef Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90(23), 231904 (2007)CrossRef
33.
go back to reference Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys. Lett. 91(5), 56007 (2010)CrossRef Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys. Lett. 91(5), 56007 (2010)CrossRef
34.
go back to reference Gurtin, M., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)CrossRef Gurtin, M., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)CrossRef
35.
go back to reference Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)CrossRef Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)CrossRef
36.
go back to reference Weissmüller, J., Cahn, J.: Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids. Acta Mater. 45(5), 1899–1906 (1997)CrossRef Weissmüller, J., Cahn, J.: Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids. Acta Mater. 45(5), 1899–1906 (1997)CrossRef
37.
go back to reference Duan, H., Wang, J., Huang, Z., Karihaloo, B.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)MathSciNetCrossRef Duan, H., Wang, J., Huang, Z., Karihaloo, B.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)MathSciNetCrossRef
38.
go back to reference Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(5), 663–671 (2004)CrossRef Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(5), 663–671 (2004)CrossRef
39.
go back to reference Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)CrossRef Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)CrossRef
40.
go back to reference Chen, T., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young–Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100(7), 074308 (2006)CrossRef Chen, T., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young–Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100(7), 074308 (2006)CrossRef
41.
go back to reference Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49(11), 1244–1255 (2011)CrossRef Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49(11), 1244–1255 (2011)CrossRef
42.
go back to reference He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93(26), 263108 (2008)CrossRef He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93(26), 263108 (2008)CrossRef
43.
go back to reference Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108(7), 074312 (2010)CrossRef Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108(7), 074312 (2010)CrossRef
44.
go back to reference Assadi, A., Farshi, B., Alinia-Ziazi, A.: Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107(12), 124310 (2010)CrossRef Assadi, A., Farshi, B., Alinia-Ziazi, A.: Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107(12), 124310 (2010)CrossRef
45.
go back to reference Zhang, L., Liu, J., Fang, X., Nie, G.: Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E Low Dimens. Syst. Nanostruct. 57, 169–174 (2014)CrossRef Zhang, L., Liu, J., Fang, X., Nie, G.: Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E Low Dimens. Syst. Nanostruct. 57, 169–174 (2014)CrossRef
46.
go back to reference Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35(2), 941–951 (2011)MathSciNetCrossRef Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35(2), 941–951 (2011)MathSciNetCrossRef
47.
go back to reference Koochi, A., Kazemi, A., Khandani, F., Abadyan, M.: Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Phys. Scr. 85(3), 035804 (2012)CrossRef Koochi, A., Kazemi, A., Khandani, F., Abadyan, M.: Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Phys. Scr. 85(3), 035804 (2012)CrossRef
48.
go back to reference Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology 21(50), 505708 (2010)CrossRef Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology 21(50), 505708 (2010)CrossRef
49.
go back to reference Yang, F., Wang, G.F., Long, J.M., Wang, B.L.: Influence of surface energy on the pull-in instability of electrostatic nano-switches. J. Comput. Theor. Nanosci. 10(5), 1273–1277 (2013)CrossRef Yang, F., Wang, G.F., Long, J.M., Wang, B.L.: Influence of surface energy on the pull-in instability of electrostatic nano-switches. J. Comput. Theor. Nanosci. 10(5), 1273–1277 (2013)CrossRef
50.
go back to reference Yan, Z., Jiang, L.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24), 245703 (2011)CrossRef Yan, Z., Jiang, L.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24), 245703 (2011)CrossRef
51.
go back to reference Wang, K., Wang, B.: A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature. Physica E Low Dimens. Syst. Nanostruct. 66, 197–208 (2015)CrossRef Wang, K., Wang, B.: A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature. Physica E Low Dimens. Syst. Nanostruct. 66, 197–208 (2015)CrossRef
52.
go back to reference Aifantis, E.: Strain gradient interpretation of size effects. Int. J. Fract. 95(1–4), 299–314 (1999)CrossRef Aifantis, E.: Strain gradient interpretation of size effects. Int. J. Fract. 95(1–4), 299–314 (1999)CrossRef
53.
go back to reference Askes, H., Suiker, A., Sluys, L.: A classification of higher-order strain-gradient models-linear analysis. Arch. Appl. Mech. 72(2–3), 171–188 (2002)CrossRef Askes, H., Suiker, A., Sluys, L.: A classification of higher-order strain-gradient models-linear analysis. Arch. Appl. Mech. 72(2–3), 171–188 (2002)CrossRef
54.
go back to reference Christensen, J., Bastien, C.: Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations. Butterworth–Heinemann, Oxford (2015) Christensen, J., Bastien, C.: Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations. Butterworth–Heinemann, Oxford (2015)
55.
go back to reference Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94(14), 141913 (2009)CrossRef Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94(14), 141913 (2009)CrossRef
56.
go back to reference Kahrobaiyan, M., Rahaeifard, M., Tajalli, S., Ahmadian, M.: A strain gradient functionally graded Euler–Bernoulli beam formulation. Int. J. Eng. Sci. 52, 65–76 (2012)MathSciNetCrossRef Kahrobaiyan, M., Rahaeifard, M., Tajalli, S., Ahmadian, M.: A strain gradient functionally graded Euler–Bernoulli beam formulation. Int. J. Eng. Sci. 52, 65–76 (2012)MathSciNetCrossRef
57.
go back to reference Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487–498 (2009)MathSciNetCrossRef Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487–498 (2009)MathSciNetCrossRef
58.
go back to reference Shampine, L.F., Kierzenka, J., Reichelt, M.W.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial notes (2000) Shampine, L.F., Kierzenka, J., Reichelt, M.W.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial notes (2000)
59.
go back to reference Wu, Q., Volinsky, A.A., Qiao, L., Su, Y.: Surface effects on static bending of nanowires based on non-local elasticity theory. Prog. Nat. Sci. Mater. Int. 25(5), 520–524 (2015)CrossRef Wu, Q., Volinsky, A.A., Qiao, L., Su, Y.: Surface effects on static bending of nanowires based on non-local elasticity theory. Prog. Nat. Sci. Mater. Int. 25(5), 520–524 (2015)CrossRef
60.
go back to reference Fleming, M., Chu, Y., Moran, B., Belytschko, T., Lu, Y., Gu, L.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 40(8), 1483–1504 (1997)MathSciNetCrossRef Fleming, M., Chu, Y., Moran, B., Belytschko, T., Lu, Y., Gu, L.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 40(8), 1483–1504 (1997)MathSciNetCrossRef
61.
go back to reference Joseph, R., Purbolaksono, J., Liew, H., Ramesh, S., Hamdi, M.: Stress intensity factors of a corner crack emanating from a pinhole of a solid cylinder. Eng. Fract. Mech. 128, 1–7 (2014)CrossRef Joseph, R., Purbolaksono, J., Liew, H., Ramesh, S., Hamdi, M.: Stress intensity factors of a corner crack emanating from a pinhole of a solid cylinder. Eng. Fract. Mech. 128, 1–7 (2014)CrossRef
62.
go back to reference Guha, S., Sangal, S., Basu, S.: Finite element studies on indentation size effect using a higher order strain gradient theory. Int. J. Solids Struct. 50(6), 863–875 (2013)CrossRef Guha, S., Sangal, S., Basu, S.: Finite element studies on indentation size effect using a higher order strain gradient theory. Int. J. Solids Struct. 50(6), 863–875 (2013)CrossRef
63.
go back to reference Joseph, R.P., Wang, B., Samali, B.: Strain gradient fracture in an anti-plane cracked material layer. Int. J. Solids Struct.(2018, in press) Joseph, R.P., Wang, B., Samali, B.: Strain gradient fracture in an anti-plane cracked material layer. Int. J. Solids Struct.(2018, in press)
Metadata
Title
Size-dependent stress intensity factors in a gradient elastic double cantilever beam with surface effects
Authors
R. P. Joseph
B. Wang
B. Samali
Publication date
07-06-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 10/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1406-6

Other articles of this Issue 10/2018

Archive of Applied Mechanics 10/2018 Go to the issue

Premium Partners