Skip to main content
Top
Published in: Wireless Personal Communications 3/2023

30-08-2023

Smart Channel Modelling for Rain Attenuation Using ML for Designing of 6G Networks at D and G Bands

Authors: Vivek Kumar, Hitesh Singh, Kumud Saxena, Vinod M. Kapse, Boncho Bonev, Ramjee Prasad

Published in: Wireless Personal Communications | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the future, communication technologies are expected to achieve data rates exceeding 100 Gbps by utilizing higher spectrum, like terahertz wavebands, which have broader bandwidth than 5G. In order to accomplish this goal, the research and development efforts for 6G will concentrate on the utilization of terahertz waves, which have frequencies having range of 100–200 GHz. Nonetheless, application of these bands faces challenges due to their vulnerability to external environmental factors, such as cloud cover, fog, dust, and rain. This research proposes a Machine Learning Models to estimate the Rain induced attenuation at the D and G bands to address these challenges. AMSER-2 Satellite data was used to train the model. Different optimization strategies are used to improve the training model. The obtained results were compared to various related state of art.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
6.
go back to reference Dohler, M., Mahmoodi, T., Lema, M. A., Condoluci, M., Sardis, F., Antonakoglou, K., & Aghvami, H. (2017). Internet of skills, where robotics meets AI, 5G and the Tactile Internet. In 2017 European conference on networks and communications (EuCNC) (pp. 1–5). https://doi.org/10.1109/EuCNC.2017.7980645. ISBN 978-1-5386-3873-6. S2CID 32801348. Dohler, M., Mahmoodi, T., Lema, M. A., Condoluci, M., Sardis, F., Antonakoglou, K., & Aghvami, H. (2017). Internet of skills, where robotics meets AI, 5G and the Tactile Internet. In 2017 European conference on networks and communications (EuCNC) (pp. 1–5). https://​doi.​org/​10.​1109/​EuCNC.​2017.​7980645. ISBN 978-1-5386-3873-6. S2CID 32801348.
8.
go back to reference De Alwis, C., Kalla, A., Pham, Q. V., Kumar, P., Dev, K., Hwang, W. J., & Liyanage, M. (2021). Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open Journal of the Communications Society, 2, 836–886.CrossRef De Alwis, C., Kalla, A., Pham, Q. V., Kumar, P., Dev, K., Hwang, W. J., & Liyanage, M. (2021). Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open Journal of the Communications Society, 2, 836–886.CrossRef
14.
go back to reference Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957–975.CrossRef Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957–975.CrossRef
15.
go back to reference Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16–32.CrossRef Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16–32.CrossRef
16.
go back to reference Mumtaz, S., Miquel Jornet, J., Aulin, J., Gerstacker, W. H., Dong, X., & Ai, B. (2017). Terahertz communication for vehicular networks. IEEE Transactions on Vehicular Technology, 66(7), 5617–5625.CrossRef Mumtaz, S., Miquel Jornet, J., Aulin, J., Gerstacker, W. H., Dong, X., & Ai, B. (2017). Terahertz communication for vehicular networks. IEEE Transactions on Vehicular Technology, 66(7), 5617–5625.CrossRef
17.
go back to reference Chaccourm, C., AMER, R., Zhou, B., & Saad, W. (2019). On the reliability of wireless virtual reality at terahertz (THz) frequencies. rXiv[cs.IT]. Chaccourm, C., AMER, R., Zhou, B., & Saad, W. (2019). On the reliability of wireless virtual reality at terahertz (THz) frequencies. rXiv[cs.IT].
18.
go back to reference Yu, L., et al. (2019). The medical application of terahertz technology in noninvasive detection of cells and tissues: Opportunities and challenges. RSC Advances, 9(17), 9354–9363.CrossRef Yu, L., et al. (2019). The medical application of terahertz technology in noninvasive detection of cells and tissues: Opportunities and challenges. RSC Advances, 9(17), 9354–9363.CrossRef
19.
go back to reference Rappaport, T. S., et al. (2019). Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access, 7, 78729–78757.CrossRef Rappaport, T. S., et al. (2019). Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access, 7, 78729–78757.CrossRef
20.
go back to reference Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., & Chavarria-Reyes, E. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 10, 31–60.CrossRef Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., & Chavarria-Reyes, E. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 10, 31–60.CrossRef
21.
go back to reference Cang, L., Zhao, H.-K., & Zheng, G.-X. (2019). The impact of atmospheric turbulence on terahertz communication. IEEE Access, 7, 88685–88692.CrossRef Cang, L., Zhao, H.-K., & Zheng, G.-X. (2019). The impact of atmospheric turbulence on terahertz communication. IEEE Access, 7, 88685–88692.CrossRef
22.
go back to reference Guide to Meteorological Instrument and Methods of Observation, World Meteorological Organization (WMO), Geneva, Switzerland, 2008. Guide to Meteorological Instrument and Methods of Observation, World Meteorological Organization (WMO), Geneva, Switzerland, 2008.
23.
go back to reference Federici, J. F., Ma, J., & Moeller, L. (2016). Review of weather impact on outdoor terahertz wireless communication links. Nano Communication Networks, 10, 13–26.CrossRef Federici, J. F., Ma, J., & Moeller, L. (2016). Review of weather impact on outdoor terahertz wireless communication links. Nano Communication Networks, 10, 13–26.CrossRef
24.
go back to reference Wang, R., Mei, Y., Meng, X., & Ma, J. (2021). Secrecy performance of terahertz wireless links in rain and snow. Nano Communication Networks, 28, 100350.CrossRef Wang, R., Mei, Y., Meng, X., & Ma, J. (2021). Secrecy performance of terahertz wireless links in rain and snow. Nano Communication Networks, 28, 100350.CrossRef
25.
go back to reference Xing, Y., & Rappaport, T. S. (2021). Terahertz wireless communications: Co-sharing for terrestrial and satellite systems above 100 GHz. IEEE Communications Letters, 25, 3156–3160.CrossRef Xing, Y., & Rappaport, T. S. (2021). Terahertz wireless communications: Co-sharing for terrestrial and satellite systems above 100 GHz. IEEE Communications Letters, 25, 3156–3160.CrossRef
26.
go back to reference Morais, L., Menezes, L., & Moraes, P. Estimating Brasilia Rain attenuation at THz frequencies from historical data based in Monte Carlo simulation and unscented transform. Morais, L., Menezes, L., & Moraes, P. Estimating Brasilia Rain attenuation at THz frequencies from historical data based in Monte Carlo simulation and unscented transform.
27.
go back to reference Tamošiūnaitė, M., Tamošiūnas, V., & Valušis, G. (2018). Wireless communications beyond 5G: Uncertainties of terahertz wave attenuation due to rain. Lithuanian Journal of Physics, 58(2), 149–158.CrossRef Tamošiūnaitė, M., Tamošiūnas, V., & Valušis, G. (2018). Wireless communications beyond 5G: Uncertainties of terahertz wave attenuation due to rain. Lithuanian Journal of Physics, 58(2), 149–158.CrossRef
28.
go back to reference Tamosiunaite, M., Tamosiunas, S., Zilinskas, M., & Valusis, G. (2017). Atmospheric attenuation of the terahertz wireless networks. In Broadband communications networks-recent advances and lessons from practice (pp. 143–156). Tamosiunaite, M., Tamosiunas, S., Zilinskas, M., & Valusis, G. (2017). Atmospheric attenuation of the terahertz wireless networks. In Broadband communications networks-recent advances and lessons from practice (pp. 143–156).
29.
go back to reference Federici, J. F., Ma, J., & Moeller, L. (2015). Weather impact on outdoor terahertz wireless links. In: Proceedings of the second annual international conference on nanoscale computing and communication (pp. 1–6). Federici, J. F., Ma, J., & Moeller, L. (2015). Weather impact on outdoor terahertz wireless links. In: Proceedings of the second annual international conference on nanoscale computing and communication (pp. 1–6).
30.
go back to reference Moon, E. B., Jeon, T. I., & Grischkowsky, D. R. (2015). Long-path THz-TDS atmospheric measurements between buildings. IEEE Transactions on Terahertz Science and Technology, 5(5), 742–750.CrossRef Moon, E. B., Jeon, T. I., & Grischkowsky, D. R. (2015). Long-path THz-TDS atmospheric measurements between buildings. IEEE Transactions on Terahertz Science and Technology, 5(5), 742–750.CrossRef
31.
go back to reference Ma, J., Li, P., Zhao, L., Wang, J., Liu, W., Mei, Y., Bu, X., & An, J. (2021). Attenuation and dispersion on terahertz wireless channels in falling rain. Ma, J., Li, P., Zhao, L., Wang, J., Liu, W., Mei, Y., Bu, X., & An, J. (2021). Attenuation and dispersion on terahertz wireless channels in falling rain.
32.
go back to reference Lai, Z., Yi, H., Guan, K., Ai, B., Zhong, W., Dou, J., Zeng, Y., & Zhong, Z. (2020). Impact of meteorological attenuation on channel characterization at 300 GHz. Electronics, 9(7), 1115.CrossRef Lai, Z., Yi, H., Guan, K., Ai, B., Zhong, W., Dou, J., Zeng, Y., & Zhong, Z. (2020). Impact of meteorological attenuation on channel characterization at 300 GHz. Electronics, 9(7), 1115.CrossRef
33.
go back to reference Ishii, S., Sayama, S., & Kamei, T. (2011). Measurement of rain attenuation in terahertz wave range. Ishii, S., Sayama, S., & Kamei, T. (2011). Measurement of rain attenuation in terahertz wave range.
34.
go back to reference Weng, Z. K., Kanno, A., Dat, P. T., Inagaki, K., Tanabe, K., Sasaki, E., Kürner, T., Jung, B. K., & Kawanishi, T. (2021). Millimeter-wave and terahertz fixed wireless link budget evaluation for extreme weather conditions. IEEE Access, 9, 163476–163491.CrossRef Weng, Z. K., Kanno, A., Dat, P. T., Inagaki, K., Tanabe, K., Sasaki, E., Kürner, T., Jung, B. K., & Kawanishi, T. (2021). Millimeter-wave and terahertz fixed wireless link budget evaluation for extreme weather conditions. IEEE Access, 9, 163476–163491.CrossRef
36.
go back to reference Huang, J., Cao, Y., Raimundo, X., Cheema, A., & Salous, S. (2019). Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links. IEEE Access, 7, 156110–156120.CrossRef Huang, J., Cao, Y., Raimundo, X., Cheema, A., & Salous, S. (2019). Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links. IEEE Access, 7, 156110–156120.CrossRef
37.
go back to reference Alencar, G. A. (2004). Low statistical data processing for applications in Earth-space paths rain attenuation prediction by an artificial neural network. In: 2004 Asia-Pacific radio science conference, 2004. Proceedings (pp. 344–346). IEEE. Alencar, G. A. (2004). Low statistical data processing for applications in Earth-space paths rain attenuation prediction by an artificial neural network. In: 2004 Asia-Pacific radio science conference, 2004. Proceedings (pp. 344–346). IEEE.
38.
go back to reference Thiennviboon, P., &Wisutimateekorn, S. (2019). Rain attenuation prediction modeling for Earth-space links using artificial neural networks. In 2019 16th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 29–32). IEEE. Thiennviboon, P., &Wisutimateekorn, S. (2019). Rain attenuation prediction modeling for Earth-space links using artificial neural networks. In 2019 16th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 29–32). IEEE.
39.
go back to reference Mpoporo, L. J., Owolawi, P. A., & Ayo, A. O. (2019). Utilization of artificial neural networks for estimation of slant-path rain attenuation. In 2019 international multidisciplinary information technology and engineering conference (IMITEC) (pp. 1–7). IEEE. Mpoporo, L. J., Owolawi, P. A., & Ayo, A. O. (2019). Utilization of artificial neural networks for estimation of slant-path rain attenuation. In 2019 international multidisciplinary information technology and engineering conference (IMITEC) (pp. 1–7). IEEE.
40.
go back to reference Livieratos, S. N., & Cottis, P. G. (2019). Rain attenuation along terrestrial millimeter wave links: A new prediction method based on supervised machine learning. IEEE Access, 7, 138745–138756.CrossRef Livieratos, S. N., & Cottis, P. G. (2019). Rain attenuation along terrestrial millimeter wave links: A new prediction method based on supervised machine learning. IEEE Access, 7, 138745–138756.CrossRef
41.
go back to reference Li, T., Suzuki, K., Nishioka, J., Mizukoshi, Y., & Hasegawa, Y. (2015). Short-term rainfall attenuation prediction for wireless communication. In 2015 IEEE 16th international conference on communication technology (ICCT) (pp. 615–619). IEEE. Li, T., Suzuki, K., Nishioka, J., Mizukoshi, Y., & Hasegawa, Y. (2015). Short-term rainfall attenuation prediction for wireless communication. In 2015 IEEE 16th international conference on communication technology (ICCT) (pp. 615–619). IEEE.
42.
go back to reference Ahuna, M. N., Afullo, T. J., & Alonge, A. A. (2019). Rain attenuation prediction using artificial neural network for dynamic rain fade mitigation. SAIEE Africa Research Journal, 110(1), 11–18.CrossRef Ahuna, M. N., Afullo, T. J., & Alonge, A. A. (2019). Rain attenuation prediction using artificial neural network for dynamic rain fade mitigation. SAIEE Africa Research Journal, 110(1), 11–18.CrossRef
43.
go back to reference Wentz, F. J., Meissner, T., Gentemann, C., Hilburn, K. A., Scott, J. (2014). Remote sensing systems GCOM-W1 AMSR2 [Daily data] environmental suite on 0.25 deg grid. Remote Sensing Systems, Santa Rosa, CA. www.remss.com/missions/amsr. Wentz, F. J., Meissner, T., Gentemann, C., Hilburn, K. A., Scott, J. (2014). Remote sensing systems GCOM-W1 AMSR2 [Daily data] environmental suite on 0.25 deg grid. Remote Sensing Systems, Santa Rosa, CA. www.​remss.​com/​missions/​amsr.
44.
go back to reference Zhao, L., Zhao, L., Song, Q., Zhao, C., & Li, B. (2014). Rain attenuation prediction models of 60 GHz based on neural network and least squares-support vector machine. In The proceedings of the second international conference on communications, signal processing, and systems (pp. 413–421). Springer, Cham. Zhao, L., Zhao, L., Song, Q., Zhao, C., & Li, B. (2014). Rain attenuation prediction models of 60 GHz based on neural network and least squares-support vector machine. In The proceedings of the second international conference on communications, signal processing, and systems (pp. 413–421). Springer, Cham.
45.
go back to reference Roy, B., Acharya, R., & Sivaraman, M. R. (2012). Attenuation prediction for fade mitigation using neural network within situ learning algorithm. Advances in Space Research, 49(2), 336–350.CrossRef Roy, B., Acharya, R., & Sivaraman, M. R. (2012). Attenuation prediction for fade mitigation using neural network within situ learning algorithm. Advances in Space Research, 49(2), 336–350.CrossRef
46.
go back to reference Singh, H., Kumar, V., Saxena, K., & Bonev, B. (2020). An intelligent model for prediction of attenuation caused by rain based on machine learning techniques. In 2020 international conference on contemporary computing and applications (IC3A) (pp. 92–97). IEEE. Singh, H., Kumar, V., Saxena, K., & Bonev, B. (2020). An intelligent model for prediction of attenuation caused by rain based on machine learning techniques. In 2020 international conference on contemporary computing and applications (IC3A) (pp. 92–97). IEEE.
47.
go back to reference Amarjit, &Gangwar, R. P. S. (2008). Implementation of artificial neural network for prediction of rain attenuation in microwave and millimeter wave frequencies. IETE Journal of Research, 54(5), 346–352. Amarjit, &Gangwar, R. P. S. (2008). Implementation of artificial neural network for prediction of rain attenuation in microwave and millimeter wave frequencies. IETE Journal of Research, 54(5), 346–352.
48.
go back to reference Singh, H., et al. (2020). Proposed model for radio wave attenuation due to rain (RWAR). Wireless Personal Communications, 115, 791.CrossRef Singh, H., et al. (2020). Proposed model for radio wave attenuation due to rain (RWAR). Wireless Personal Communications, 115, 791.CrossRef
49.
go back to reference Singh, H., et al. (2020). An empirical model for prediction of environmental attenuation of millimeter waves. Wireless Personal Communications, 115(1), 809–826.CrossRef Singh, H., et al. (2020). An empirical model for prediction of environmental attenuation of millimeter waves. Wireless Personal Communications, 115(1), 809–826.CrossRef
50.
go back to reference Singh, H., et al. (2020). An Intelligent model for prediction of attenuation caused by rain based on machine learning techniques. In 2020 international conference on contemporary computing and applications (IC3A). IEEE. Singh, H., et al. (2020). An Intelligent model for prediction of attenuation caused by rain based on machine learning techniques. In 2020 international conference on contemporary computing and applications (IC3A). IEEE.
51.
go back to reference Singh, H., et al. (2022). A smart model for prediction of radio wave attenuation due to clouds and fog (SMRWACF). Wireless Personal Communications, 122(4), 3227–3245.CrossRef Singh, H., et al. (2022). A smart model for prediction of radio wave attenuation due to clouds and fog (SMRWACF). Wireless Personal Communications, 122(4), 3227–3245.CrossRef
52.
go back to reference Kumar, V., et al. (2021). Soft clustering for enhancing ITU rain model based on machine learning techniques. Wireless Personal Communications, 120(1), 287–305.CrossRef Kumar, V., et al. (2021). Soft clustering for enhancing ITU rain model based on machine learning techniques. Wireless Personal Communications, 120(1), 287–305.CrossRef
53.
go back to reference Singh, H., et al. (2021). Prediction of radio wave attenuation due to clouds using ANN and its business aspects. In 2021 29th national conference with international participation (TELECOM). IEEE. Singh, H., et al. (2021). Prediction of radio wave attenuation due to clouds using ANN and its business aspects. In 2021 29th national conference with international participation (TELECOM). IEEE.
54.
go back to reference Singh, H., et al. (2021). Prediction of radio wave attenuation due to cloud using machine learning techniques. In 2021 56th international scientific conference on information, communication and energy systems and technologies (ICEST). IEEE. Singh, H., et al. (2021). Prediction of radio wave attenuation due to cloud using machine learning techniques. In 2021 56th international scientific conference on information, communication and energy systems and technologies (ICEST). IEEE.
55.
go back to reference Kumar, V., et al. (2021). Approximations for ITV rain model using machine learning. In 2021 56th international scientific conference on information, communication and energy systems and technologies (ICEST). IEEE. Kumar, V., et al. (2021). Approximations for ITV rain model using machine learning. In 2021 56th international scientific conference on information, communication and energy systems and technologies (ICEST). IEEE.
56.
go back to reference Kumar, V., et al. (2021). An ANN model for predicting radio wave attenuation due to rain and its business aspect. In 2021 29th national conference with international participation (TELECOM). IEEE. Kumar, V., et al. (2021). An ANN model for predicting radio wave attenuation due to rain and its business aspect. In 2021 29th national conference with international participation (TELECOM). IEEE.
57.
go back to reference Singh, H., Kumar, V., Saxena, K., & Bonev, B. (2021). Computational intelligent techniques for prediction of environmental attenuation of millimeter waves. Security and Privacy Issues in IoT Devices and Sensor Networks, 263–284. Singh, H., Kumar, V., Saxena, K., & Bonev, B. (2021). Computational intelligent techniques for prediction of environmental attenuation of millimeter waves. Security and Privacy Issues in IoT Devices and Sensor Networks, 263–284.
58.
go back to reference Singh, H., Prasad, R., & Bonev, B. (2018). The studies of millimeter waves at 60 GHz in outdoor environments for IMT applications: A state of art. Wireless Personal Communications, 100(2), 463–474.CrossRef Singh, H., Prasad, R., & Bonev, B. (2018). The studies of millimeter waves at 60 GHz in outdoor environments for IMT applications: A state of art. Wireless Personal Communications, 100(2), 463–474.CrossRef
59.
go back to reference Singh, H., Bonev, B., & Chandra, A. (2018). Effects of atmospheric impairments of satellite link operating in Ka band. Wireless Personal Communications, 101(1), 425–437.CrossRef Singh, H., Bonev, B., & Chandra, A. (2018). Effects of atmospheric impairments of satellite link operating in Ka band. Wireless Personal Communications, 101(1), 425–437.CrossRef
60.
go back to reference ITU-R. (2007). Propagation data and prediction methods required for the design of Earth-space Telecommunication system. Rec. ITU-R P.618-9. ITU-R. (2007). Propagation data and prediction methods required for the design of Earth-space Telecommunication system. Rec. ITU-R P.618-9.
Metadata
Title
Smart Channel Modelling for Rain Attenuation Using ML for Designing of 6G Networks at D and G Bands
Authors
Vivek Kumar
Hitesh Singh
Kumud Saxena
Vinod M. Kapse
Boncho Bonev
Ramjee Prasad
Publication date
30-08-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10701-z

Other articles of this Issue 3/2023

Wireless Personal Communications 3/2023 Go to the issue