Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

16.06.2020

An Empirical Model for Prediction of Environmental Attenuation of Millimeter Waves

verfasst von: Hitesh Singh, Kumud Saxena, Vivek Kumar, Boncho Bonev, Ramjee Prasad

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The latest trends in mobile technology have increased the need for higher spectrum bands from every sector of using wireless applications. As the internet is growing rapidly it has increased the need for wireless services, which require radio spectrum and thus becoming more congested. Engineers show that due to high demand for spectrum, government authorities are regularly introducing schemes to regulate the use of spectrum. New researches are enhancing to resolve the crisis. In order to fix the spectrum for future technologies, propagation studies are required. In this paper an empirical model is proposed for prediction of attenuation due to clouds and fog based on the Rayleigh approximation model. In this model a new concept of calculating dielectric constants of water are also introduced. The implementation results of the proposed model are compared with the other cloud attenuation models. The proposed model proved to be better than the ITU-R model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Seybold, J. S. (2005). Introduction to RF propagation. New York: Wiley.CrossRef Seybold, J. S. (2005). Introduction to RF propagation. New York: Wiley.CrossRef
2.
Zurück zum Zitat Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2011). Atmospheric gas impact on fixed satellite communication link a study of its effects at Ku, Ka and V bands in Nigeria. In 2011 IEEE international conference on space science and communication (IconSpace). IEEE. Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2011). Atmospheric gas impact on fixed satellite communication link a study of its effects at Ku, Ka and V bands in Nigeria. In 2011 IEEE international conference on space science and communication (IconSpace). IEEE.
3.
Zurück zum Zitat Frey, T. L. (1999). The Effects of the atmosphere and weather on the performance of a mm-wave communication link. Applied Microwave and Wireless, 11, 76–81. Frey, T. L. (1999). The Effects of the atmosphere and weather on the performance of a mm-wave communication link. Applied Microwave and Wireless, 11, 76–81.
4.
Zurück zum Zitat Magono, C., & Nakamura, T. (1965). Aerodynamic studies of falling snowflakes. Journal of the Meteorological Society of Japan. Ser. II, 43(3), 139–147.CrossRef Magono, C., & Nakamura, T. (1965). Aerodynamic studies of falling snowflakes. Journal of the Meteorological Society of Japan. Ser. II, 43(3), 139–147.CrossRef
5.
Zurück zum Zitat Gunn, K. L. S., & Marshall, J. S. (1958). The distribution with size of aggregate snowflakes. Journal of Meteorology, 15, 452–461.CrossRef Gunn, K. L. S., & Marshall, J. S. (1958). The distribution with size of aggregate snowflakes. Journal of Meteorology, 15, 452–461.CrossRef
6.
Zurück zum Zitat Sekhon, R. S., & Srivastava, R. C. (1970). Snow size spectra and radar reflectivity. Journal of the Atmospheric Sciences, 27(2), 299–307.CrossRef Sekhon, R. S., & Srivastava, R. C. (1970). Snow size spectra and radar reflectivity. Journal of the Atmospheric Sciences, 27(2), 299–307.CrossRef
7.
Zurück zum Zitat Oguchi, T. (1983). Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proceedings of the IEEE, 71, 9.CrossRef Oguchi, T. (1983). Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proceedings of the IEEE, 71, 9.CrossRef
8.
Zurück zum Zitat Douglas, R. H. (1963) Hail size distributions of Alberta hail samples. Mc Gill University, Montreal, Stormy Wea. Gp. Sci. Rep. MW-36, (pp. 55–71). Douglas, R. H. (1963) Hail size distributions of Alberta hail samples. Mc Gill University, Montreal, Stormy Wea. Gp. Sci. Rep. MW-36, (pp. 55–71).
9.
Zurück zum Zitat Harb, K., et al. (2012). A proposed method for dust and sand storms effect on satellite communication networks. Innovations on Communication Theory INCT, (Istanbul, Turkey) (pp. 33–37). Harb, K., et al. (2012). A proposed method for dust and sand storms effect on satellite communication networks. Innovations on Communication Theory INCT, (Istanbul, Turkey) (pp. 33–37).
10.
Zurück zum Zitat Harb, K., et al. (2013). Systems adaptation for satellite signal under dust, sand and gaseous attenuations. Journal of Wireless Networking and Communications, 3(3), 39–49. Harb, K., et al. (2013). Systems adaptation for satellite signal under dust, sand and gaseous attenuations. Journal of Wireless Networking and Communications, 3(3), 39–49.
11.
Zurück zum Zitat Harb, K., et al. (2015). Ka-band VSAT system models under measured DUSA attenuation. In: SPACOMM, the seventh international conference in advances in satellite and space communications. Harb, K., et al. (2015). Ka-band VSAT system models under measured DUSA attenuation. In: SPACOMM, the seventh international conference in advances in satellite and space communications.
12.
Zurück zum Zitat Hossain, M. S., & Samad, M. A. (2015). The tropospheric scintillation prediction of earth-to-satellite link for Bangladeshi climatic condition. Serbian Journal of Electrical Engineering, 12(3), 263–273.CrossRef Hossain, M. S., & Samad, M. A. (2015). The tropospheric scintillation prediction of earth-to-satellite link for Bangladeshi climatic condition. Serbian Journal of Electrical Engineering, 12(3), 263–273.CrossRef
13.
Zurück zum Zitat Del Pino, P. G., et al. (2008). Tropospheric scintillation measurements on a Ka-Band satellite link in Madrid. URSI. Del Pino, P. G., et al. (2008). Tropospheric scintillation measurements on a Ka-Band satellite link in Madrid. URSI.
14.
Zurück zum Zitat van de Kamp, M. M. J. L., et al. (1999). Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Transactions on antennas and propagation, 47(2), 249–260.CrossRef van de Kamp, M. M. J. L., et al. (1999). Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Transactions on antennas and propagation, 47(2), 249–260.CrossRef
15.
Zurück zum Zitat World Meteorological Organization, ed. (1975). Cirrus, International Cloud Atlus. World Meteorological Organization, ed. (1975). Cirrus, International Cloud Atlus.
16.
Zurück zum Zitat Gunn, K. L. S., & East, T. W. R. (1954). The microwave properties of precipitation particles. Quarterly Journal of the Royal Meteorological Society, 80(346), 522–545.CrossRef Gunn, K. L. S., & East, T. W. R. (1954). The microwave properties of precipitation particles. Quarterly Journal of the Royal Meteorological Society, 80(346), 522–545.CrossRef
17.
Zurück zum Zitat Staelin, D. H. (1966). Measurements and interpretation of the microwave spectrum of the terrestrial atmosphere near 1-centimeter wavelength. Journal of Geophysical Research, 71(12), 2875–2881.CrossRef Staelin, D. H. (1966). Measurements and interpretation of the microwave spectrum of the terrestrial atmosphere near 1-centimeter wavelength. Journal of Geophysical Research, 71(12), 2875–2881.CrossRef
18.
Zurück zum Zitat Slobin, S. D. (1982). Microwave noise temperature and attenuation of clouds: Statistics of these effects at various sites in the United States, Alaska, and Hawaii. Radio Science, 17(6), 1443–1454.CrossRef Slobin, S. D. (1982). Microwave noise temperature and attenuation of clouds: Statistics of these effects at various sites in the United States, Alaska, and Hawaii. Radio Science, 17(6), 1443–1454.CrossRef
19.
Zurück zum Zitat Altshuler, E. E., & Marr, R. A. (1989). Cloud attenuation at millimeter wavelengths. IEEE Transactions on Antennas and Propagation, 37(11), 1473–1479.CrossRef Altshuler, E. E., & Marr, R. A. (1989). Cloud attenuation at millimeter wavelengths. IEEE Transactions on Antennas and Propagation, 37(11), 1473–1479.CrossRef
20.
Zurück zum Zitat Liebe, H. J. (1989). MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6), 631–650.CrossRef Liebe, H. J. (1989). MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6), 631–650.CrossRef
21.
Zurück zum Zitat Salonen, E., & Uppala, S. (1991). New prediction method of cloud attenuation. Electronics Letters, 27(12), 1106–1108.CrossRef Salonen, E., & Uppala, S. (1991). New prediction method of cloud attenuation. Electronics Letters, 27(12), 1106–1108.CrossRef
22.
Zurück zum Zitat Dissanayake, A., Allnutt, J., & Haidara, F. (1997). A prediction model that combines rain attenuation and other propagation impairments along earth-satellite paths. IEEE Transactions on Antennas and Propagation, 45(10), 1546–1558.CrossRef Dissanayake, A., Allnutt, J., & Haidara, F. (1997). A prediction model that combines rain attenuation and other propagation impairments along earth-satellite paths. IEEE Transactions on Antennas and Propagation, 45(10), 1546–1558.CrossRef
23.
Zurück zum Zitat Dintelmann, F., & Ortgies, G. (1989). Semiempirical model for cloud attenuation prediction. Electronics Letters, 25(22), 1487–1488.CrossRef Dintelmann, F., & Ortgies, G. (1989). Semiempirical model for cloud attenuation prediction. Electronics Letters, 25(22), 1487–1488.CrossRef
24.
Zurück zum Zitat Konefal, T., et al. (2000). Prediction of monthly and annual availabilities on 10–50 GHz satellite-Earth and aircraft-to-aircraft links. IEE Proceedings-Microwaves, Antennas and Propagation, 147(2), 122–127.CrossRef Konefal, T., et al. (2000). Prediction of monthly and annual availabilities on 10–50 GHz satellite-Earth and aircraft-to-aircraft links. IEE Proceedings-Microwaves, Antennas and Propagation, 147(2), 122–127.CrossRef
25.
Zurück zum Zitat Wrench, C. L., Davies, P. G., & Ramsden, J. (1999). Global predictions of slant path attenuation on earth-space links at EHF. International Journal of Satellite Communications and Networking, 17(2-3), 177–186.CrossRef Wrench, C. L., Davies, P. G., & Ramsden, J. (1999). Global predictions of slant path attenuation on earth-space links at EHF. International Journal of Satellite Communications and Networking, 17(2-3), 177–186.CrossRef
26.
Zurück zum Zitat Attenuation due to cloud and fog, Recommendation ITU-R P.840-5, P Series Radio wave propagation. Attenuation due to cloud and fog, Recommendation ITU-R P.840-5, P Series Radio wave propagation.
27.
Zurück zum Zitat Westwater, Ed R. (1978). The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry. Radio Science, 13(4), 677–685.CrossRef Westwater, Ed R. (1978). The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry. Radio Science, 13(4), 677–685.CrossRef
28.
Zurück zum Zitat Papatsoris, A. D. (1997). Effect of ice clouds on millimetre-wave aeronautical and satellite communications. Electronics Letters, 33(21), 1766–1768.CrossRef Papatsoris, A. D. (1997). Effect of ice clouds on millimetre-wave aeronautical and satellite communications. Electronics Letters, 33(21), 1766–1768.CrossRef
29.
Zurück zum Zitat Dissanayake, A., Allnutt, J., & Haidara, F. (2001). Cloud attenuation modelling for SHF and EHF applications. International journal of satellite communications, 19(3), 335–345.CrossRef Dissanayake, A., Allnutt, J., & Haidara, F. (2001). Cloud attenuation modelling for SHF and EHF applications. International journal of satellite communications, 19(3), 335–345.CrossRef
30.
Zurück zum Zitat Sarkar, S. K., Ahmad, I., & Gupta, M. M. (2005). Statistical morphology of cloud occurrences and cloud attenuation over Hyderabad, India. Indian Journal of Radio and Space Physics, 34, 119–124. Sarkar, S. K., Ahmad, I., & Gupta, M. M. (2005). Statistical morphology of cloud occurrences and cloud attenuation over Hyderabad, India. Indian Journal of Radio and Space Physics, 34, 119–124.
31.
Zurück zum Zitat Sarkar, S. K., & Kumar, A. (2005). Cloud attenuation and cloud noise temperature over some Indian eastern station for satellite communication. Indian Journal of Radio and Space Physics, 36, 375–378. Sarkar, S. K., & Kumar, A. (2005). Cloud attenuation and cloud noise temperature over some Indian eastern station for satellite communication. Indian Journal of Radio and Space Physics, 36, 375–378.
32.
Zurück zum Zitat Sarkar, S. K., & Kumar, A. (2007). Recent studies on cloud and precipitation phenomena for propagation characteristics over India. Indian Journal of Radio and Space Physics, 36, 502–513. Sarkar, S. K., & Kumar, A. (2007). Recent studies on cloud and precipitation phenomena for propagation characteristics over India. Indian Journal of Radio and Space Physics, 36, 502–513.
33.
Zurück zum Zitat Mandeep, J. S., & Hassan, S. I. S. (2008). Cloud attenuation for satellite applications over equatorial climate. IEEE Antennas and Wireless Propagation Letters, 7, 152–154.CrossRef Mandeep, J. S., & Hassan, S. I. S. (2008). Cloud attenuation for satellite applications over equatorial climate. IEEE Antennas and Wireless Propagation Letters, 7, 152–154.CrossRef
34.
Zurück zum Zitat Maitra, Animesh, & Chakraborty, Swastika. (2009). Cloud liquid water content and cloud attenuation studies with radiosonde data at a tropical location. Journal of Infrared, Millimeter, and Terahertz Waves, 30(4), 367–373.CrossRef Maitra, Animesh, & Chakraborty, Swastika. (2009). Cloud liquid water content and cloud attenuation studies with radiosonde data at a tropical location. Journal of Infrared, Millimeter, and Terahertz Waves, 30(4), 367–373.CrossRef
35.
Zurück zum Zitat Mattioli, V., et al. (2009). Analysis and improvements of cloud models for propagation studies. Radio Science, 44(2), 1–13.CrossRef Mattioli, V., et al. (2009). Analysis and improvements of cloud models for propagation studies. Radio Science, 44(2), 1–13.CrossRef
36.
Zurück zum Zitat Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2014). Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design. Annals of Geophysics, 56(5), 0568. Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2014). Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design. Annals of Geophysics, 56(5), 0568.
37.
Zurück zum Zitat Mandal, B. K., Bhattacharyya, D., & Kang, S. (2014). Attenuation of signal at a tropical location with radiosonde data due to cloud. International Journal of Smart Home, 8(1), 15–22.CrossRef Mandal, B. K., Bhattacharyya, D., & Kang, S. (2014). Attenuation of signal at a tropical location with radiosonde data due to cloud. International Journal of Smart Home, 8(1), 15–22.CrossRef
38.
Zurück zum Zitat Kokab, A. A. R., & Edreis, H. A. (2016). Attenuation(fading) due to clouds south Kordofan (Sudan). IOSR Journal of Electronics and Communication Engineering IOSR-JECE, 11(3), 99–100. Kokab, A. A. R., & Edreis, H. A. (2016). Attenuation(fading) due to clouds south Kordofan (Sudan). IOSR Journal of Electronics and Communication Engineering IOSR-JECE, 11(3), 99–100.
39.
Zurück zum Zitat Battaglia, A., Mroz, K., Watters, D., & Ardhuin, F. (2019). GPM-derived climatology of attenuation due to clouds and precipitation at Ka-band.IEEE Transactions on Geoscience and Remote Sensing, 58(3), 1812–1820.CrossRef Battaglia, A., Mroz, K., Watters, D., & Ardhuin, F. (2019). GPM-derived climatology of attenuation due to clouds and precipitation at Ka-band.IEEE Transactions on Geoscience and Remote Sensing, 58(3), 1812–1820.CrossRef
40.
Zurück zum Zitat Rakshit, G., Quibus, L., Vanhoenacker-Janvier, D., & Maitra, A. (2019). Using meteorological data for clear sky and cloud attenuation in Belgium and India. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–1). IEEE. Rakshit, G., Quibus, L., Vanhoenacker-Janvier, D., & Maitra, A. (2019). Using meteorological data for clear sky and cloud attenuation in Belgium and India. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–1). IEEE.
41.
Zurück zum Zitat Yuan, F., Lee, Y. H., Meng, Y. S., Manandhar, S., & Ong, J. T. (2019). High resolution ITU-R cloud attenuation model for satellite communications in tropical region. IEEE Transactions on Antennas and Propagation, 67(9), 6115–6122.CrossRef Yuan, F., Lee, Y. H., Meng, Y. S., Manandhar, S., & Ong, J. T. (2019). High resolution ITU-R cloud attenuation model for satellite communications in tropical region. IEEE Transactions on Antennas and Propagation, 67(9), 6115–6122.CrossRef
42.
Zurück zum Zitat Shelters, B., Elmore, B., Ethridge, J., Schmidt, J., Burley, J., Fiorino, S., Sugrue, J., & Terzuoli, A. (2018). Calculation of Long-term tropospheric attenuation statistics using weather cubes. In IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium (pp. 467–470). IEEE. Shelters, B., Elmore, B., Ethridge, J., Schmidt, J., Burley, J., Fiorino, S., Sugrue, J., & Terzuoli, A. (2018). Calculation of Long-term tropospheric attenuation statistics using weather cubes. In IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium (pp. 467–470). IEEE.
43.
Zurück zum Zitat Elsheikh, E. A., Suliman, F. M., Rafiqul, I. M., Habaebi, M. H., Ismail, A. F., Elshaikh, Z. E. O., & Chebil, J. (2018). Air born dust particles effects on microwave propagation in arid-area. In 2018 7th international conference on computer and communication engineering (ICCCE) (pp. 412–415). IEEE. Elsheikh, E. A., Suliman, F. M., Rafiqul, I. M., Habaebi, M. H., Ismail, A. F., Elshaikh, Z. E. O., & Chebil, J. (2018). Air born dust particles effects on microwave propagation in arid-area. In 2018 7th international conference on computer and communication engineering (ICCCE) (pp. 412–415). IEEE.
44.
Zurück zum Zitat Goldhirsh, J. (2001). Attenuation and backscatter from a derived two-dimensional duststorm model. IEEE Transactions on Antennas and Propagation, 49(12), 1703–1711.CrossRef Goldhirsh, J. (2001). Attenuation and backscatter from a derived two-dimensional duststorm model. IEEE Transactions on Antennas and Propagation, 49(12), 1703–1711.CrossRef
45.
Zurück zum Zitat David, N., Alpert, P., & Messer, H. (2013). The potential of commercial microwave networks to monitor dense fog-feasibility study. Journal of geophysical research: atmospheres, 118(20), 11–750. David, N., Alpert, P., & Messer, H. (2013). The potential of commercial microwave networks to monitor dense fog-feasibility study. Journal of geophysical research: atmospheres, 118(20), 11–750.
Metadaten
Titel
An Empirical Model for Prediction of Environmental Attenuation of Millimeter Waves
verfasst von
Hitesh Singh
Kumud Saxena
Vivek Kumar
Boncho Bonev
Ramjee Prasad
Publikationsdatum
16.06.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07599-2

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe