Skip to main content
Top
Published in: Cognitive Computation 3/2021

06-03-2020

SOAR Improved Artificial Neural Network for Multistep Decision-making Tasks

Published in: Cognitive Computation | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, artificial neural networks (ANNs) have been applied to various robot-related research areas due to their powerful spatial feature abstraction and temporal information prediction abilities. Decision-making has also played a fundamental role in the research area of robotics. How to improve ANNs with the characteristics of decision-making is a challenging research issue. ANNs are connectionist models, which means they are naturally weak in long-term planning, logical reasoning, and multistep decision-making. Considering that a small refinement of the inner network structures of ANNs will usually lead to exponentially growing data costs, an additional planning module seems necessary for the further improvement of ANNs, especially for small data learning. In this paper, we propose a state operator and result (SOAR) improved ANN (SANN) model, which takes advantage of both the long-term cognitive planning ability of SOAR and the powerful feature detection ability of ANNs. It mimics the cognitive mechanism of the human brain to improve the traditional ANN with an additional logical planning module. In addition, a data fusion module is constructed to combine the probability vector obtained by SOAR planning and the original data feature array. A data fusion module is constructed to convert the information from the logical sequences in SOAR to the probabilistic vector in ANNs. The proposed architecture is validated in two types of robot multistep decision-making experiments for a grasping task: a multiblock simulated experiment and a multicup experiment in a real scenario. The experimental results show the efficiency and high accuracy of our proposed architecture. The integration of SOAR and ANN is a good compromise between logical planning with small data and probabilistic classification with big data. It also has strong potential for more complicated tasks that require robust classification, long-term planning, and fast learning. Some potential applications include recognition of grasping order in multiobject environment and cooperative grasping of multiagents.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kotseruba I, Tsotsos JK. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev;40:1–78. Kotseruba I, Tsotsos JK. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev;40:1–78.
2.
go back to reference Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y. An integrated theory of the mind. Psychol Rev 2004;111(4):1036.CrossRef Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y. An integrated theory of the mind. Psychol Rev 2004;111(4):1036.CrossRef
3.
go back to reference Anderson JR. Human symbol manipulation within an integrated cognitive architecture. Cogn Sci 2005;29(3): 313–341.CrossRef Anderson JR. Human symbol manipulation within an integrated cognitive architecture. Cogn Sci 2005;29(3): 313–341.CrossRef
4.
go back to reference Laird JE, Newell A, Rosenbloom PS. Soar: an architecture for general intelligence. Artif Intell 1987;33 (1):1–64.CrossRef Laird JE, Newell A, Rosenbloom PS. Soar: an architecture for general intelligence. Artif Intell 1987;33 (1):1–64.CrossRef
5.
go back to reference Laird JE. 2012. The Soar cognitive architecture. MIT Press, Cambridge. Laird JE. 2012. The Soar cognitive architecture. MIT Press, Cambridge.
6.
go back to reference French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci 1999;3(4):128–135.CrossRef French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci 1999;3(4):128–135.CrossRef
7.
go back to reference Eliasmith C, Trujillo O. The use and abuse of large-scale brain models. Curr Opinion Neurobiol 2014;25: 1–6.CrossRef Eliasmith C, Trujillo O. The use and abuse of large-scale brain models. Curr Opinion Neurobiol 2014;25: 1–6.CrossRef
8.
go back to reference Hawkins J, Ahmad S. Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Front Neural Circ 2016;10:23. Hawkins J, Ahmad S. Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Front Neural Circ 2016;10:23.
9.
go back to reference Sun R, Peterson T, Merrill E. A hybrid architecture for situated learning of reactive sequential decision making. Appl Intell 1999;11(1):109–127.CrossRef Sun R, Peterson T, Merrill E. A hybrid architecture for situated learning of reactive sequential decision making. Appl Intell 1999;11(1):109–127.CrossRef
10.
go back to reference O’Reilly RC, Wyatte D, Herd S, Mingus B, Jilk DJ. Recurrent processing during object recognition. Front Psychol 2013;4:124.CrossRef O’Reilly RC, Wyatte D, Herd S, Mingus B, Jilk DJ. Recurrent processing during object recognition. Front Psychol 2013;4:124.CrossRef
11.
go back to reference Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85–117.CrossRef Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85–117.CrossRef
12.
go back to reference He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision; 2015. p. 1026–1034. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision; 2015. p. 1026–1034.
13.
go back to reference Wang Z, Wang X, Wang G. Learning fine-grained features via a cnn tree for large-scale classification. Neurocomputing 2018;275:1231–1240.CrossRef Wang Z, Wang X, Wang G. Learning fine-grained features via a cnn tree for large-scale classification. Neurocomputing 2018;275:1231–1240.CrossRef
14.
go back to reference Dahl GE, Yu D, Li D, Acero A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 2012;20(1):30–42.CrossRef Dahl GE, Yu D, Li D, Acero A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 2012;20(1):30–42.CrossRef
15.
go back to reference Redmon J, Divvala S, Girshick R, Farhadi A. You only once: look Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 779–788. Redmon J, Divvala S, Girshick R, Farhadi A. You only once: look Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 779–788.
16.
go back to reference Maturana D, Scherer S. Voxnet: a 3d convolutional neural network for real-time object recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2015. p. 922–928. Maturana D, Scherer S. Voxnet: a 3d convolutional neural network for real-time object recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2015. p. 922–928.
17.
go back to reference Oh J, Guo X, Lee H, Lewis RL, Singh S. Action-conditional video prediction using deep networks in atari games. In: Advances in neural information processing systems; 2015. p. 2863–2871. Oh J, Guo X, Lee H, Lewis RL, Singh S. Action-conditional video prediction using deep networks in atari games. In: Advances in neural information processing systems; 2015. p. 2863–2871.
18.
go back to reference Weisz G, Budzianowski P, Su P-H, Gasic M. Sample efficient deep reinforcement learning for dialogue systems with large action spaces. IEEE/ACM Trans Audio Speech Lang Process (TASLP) 2018;26(11):2083–2097.CrossRef Weisz G, Budzianowski P, Su P-H, Gasic M. Sample efficient deep reinforcement learning for dialogue systems with large action spaces. IEEE/ACM Trans Audio Speech Lang Process (TASLP) 2018;26(11):2083–2097.CrossRef
19.
go back to reference Zen H, Sak H. 2015. Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2015. P. 4470–4474. Zen H, Sak H. 2015. Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2015. P. 4470–4474.
20.
go back to reference Finn C, Levine S. 2017. Deep visual foresight for planning robot motion. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2017. p. 2786–2793. Finn C, Levine S. 2017. Deep visual foresight for planning robot motion. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2017. p. 2786–2793.
21.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves Ax, Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control through deep reinforcement learning. Nature 2015;518(7540):529.CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves Ax, Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control through deep reinforcement learning. Nature 2015;518(7540):529.CrossRef
22.
go back to reference Ge L, Ren Z, Li Y, Xue Z, Wang Y, Cai J, Yuan J. 3d hand shape and pose estimation from a single rgb image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 10833–10842. Ge L, Ren Z, Li Y, Xue Z, Wang Y, Cai J, Yuan J. 3d hand shape and pose estimation from a single rgb image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 10833–10842.
23.
go back to reference Dong J, Jiang W, Huang Q, Bao H, Zhou X. Fast and robust multi-person 3d pose estimation from multiple views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 7792–7801. Dong J, Jiang W, Huang Q, Bao H, Zhou X. Fast and robust multi-person 3d pose estimation from multiple views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 7792–7801.
24.
go back to reference Huajun Z, Jin Z, Rui W, Tan M. Multi-objective reinforcement learning algorithm and its application in drive system. In 2008 34th Annual Conference of IEEE Industrial Electronics. IEEE; 2008. p. 274–279. Huajun Z, Jin Z, Rui W, Tan M. Multi-objective reinforcement learning algorithm and its application in drive system. In 2008 34th Annual Conference of IEEE Industrial Electronics. IEEE; 2008. p. 274–279.
25.
go back to reference Hester T, Vecerik M, Pietquin O, Lanctot M, Piot B, Horgan D, Quan J, Sendonaris A, Osband I, et al. Deep q-learning from demonstrations. In: Thirty-Second AAAI Conference on Artificial Intelligence; 2018. Hester T, Vecerik M, Pietquin O, Lanctot M, Piot B, Horgan D, Quan J, Sendonaris A, Osband I, et al. Deep q-learning from demonstrations. In: Thirty-Second AAAI Conference on Artificial Intelligence; 2018.
26.
go back to reference Ellefsen KO, Torresen J. Self-adapting goals allow transfer of predictive models to new tasks; 2019. Ellefsen KO, Torresen J. Self-adapting goals allow transfer of predictive models to new tasks; 2019.
27.
go back to reference Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M. Mastering the game of go with deep neural networks and tree search. Nature 2016;529(7587):484–489.CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M. Mastering the game of go with deep neural networks and tree search. Nature 2016;529(7587):484–489.CrossRef
28.
go back to reference Yang Y, Yi L, Fermuller C, Aloimonos Y. Robot learning manipulation action plans by “watching” unconstrained videos from the world wide web. In: Twenty-ninth Aaai Conference on Artificial Intelligence; 2015. Yang Y, Yi L, Fermuller C, Aloimonos Y. Robot learning manipulation action plans by “watching” unconstrained videos from the world wide web. In: Twenty-ninth Aaai Conference on Artificial Intelligence; 2015.
29.
go back to reference Volodymyr M, Koray K, David S, Rusu AA, Joel Vx, Bellemare MG, Alex G, Martin R, Fidjeland AK, Georg O. Human-level control through deep reinforcement learning. Nature 2015;518(7540): 529.CrossRef Volodymyr M, Koray K, David S, Rusu AA, Joel Vx, Bellemare MG, Alex G, Martin R, Fidjeland AK, Georg O. Human-level control through deep reinforcement learning. Nature 2015;518(7540): 529.CrossRef
30.
go back to reference Zhang H, Lan X, Zhou X, Tian Z, Zhang Y, Zheng N. 2018. Visual manipulation relationship network for autonomous robotics. In: IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids). IEEE; 2018. p. 118–125. Zhang H, Lan X, Zhou X, Tian Z, Zhang Y, Zheng N. 2018. Visual manipulation relationship network for autonomous robotics. In: IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids). IEEE; 2018. p. 118–125.
31.
go back to reference Zeng A, Song S, Lee J, Rodriguez A, Funkhouser T. 2019. Tossingbot: learning to throw arbitrary objects with residual physics. Zeng A, Song S, Lee J, Rodriguez A, Funkhouser T. 2019. Tossingbot: learning to throw arbitrary objects with residual physics.
32.
go back to reference Chen H-Z, Tian G-H, Liu G-L. A selective attention guided initiative semantic cognition algorithm for service robot. Int J Autom Comput 2018;15(5):559–569.CrossRef Chen H-Z, Tian G-H, Liu G-L. A selective attention guided initiative semantic cognition algorithm for service robot. Int J Autom Comput 2018;15(5):559–569.CrossRef
33.
go back to reference Van Dang C, Pham TX, Gil K-J, Shin Y-B, Kim J-W, et al. Implementation of a refusable human-robot interaction task with humanoid robot by connecting soar and ros. J Korea Robot Soc 2017;12(1):55–64.CrossRef Van Dang C, Pham TX, Gil K-J, Shin Y-B, Kim J-W, et al. Implementation of a refusable human-robot interaction task with humanoid robot by connecting soar and ros. J Korea Robot Soc 2017;12(1):55–64.CrossRef
34.
go back to reference Puigbo J-Y, Pumarola A, Angulo C, Tellez R. Using a cognitive architecture for general purpose service robot control. Connect Sci 2015;27(2):105–117.CrossRef Puigbo J-Y, Pumarola A, Angulo C, Tellez R. Using a cognitive architecture for general purpose service robot control. Connect Sci 2015;27(2):105–117.CrossRef
35.
go back to reference Zheng J, Cai F, Chen W, Feng C, Chen H. Hierarchical neural representation for document classification. Cogn Comput 2019;11(2):317–327.CrossRef Zheng J, Cai F, Chen W, Feng C, Chen H. Hierarchical neural representation for document classification. Cogn Comput 2019;11(2):317–327.CrossRef
36.
go back to reference Zhou K, Wei R, Xu Z, Zhang Q, Lu H, Zhang G. 2019. An air combat decision learning system based on a brain-like cognitive mechanism. Cognitive Computation. Zhou K, Wei R, Xu Z, Zhang Q, Lu H, Zhang G. 2019. An air combat decision learning system based on a brain-like cognitive mechanism. Cognitive Computation.
37.
go back to reference Liu P, Qin X. A new decision-making method based on interval-valued linguistic intuitionistic fuzzy information. Cogn Comput 2019;11(1):125–144.CrossRef Liu P, Qin X. A new decision-making method based on interval-valued linguistic intuitionistic fuzzy information. Cogn Comput 2019;11(1):125–144.CrossRef
38.
go back to reference Doumanoglou A, Kouskouridas R, Malassiotis S, Kim T-K. Recovering 6d object pose and predicting next-best-view in the crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 3583–3592. Doumanoglou A, Kouskouridas R, Malassiotis S, Kim T-K. Recovering 6d object pose and predicting next-best-view in the crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 3583–3592.
39.
go back to reference Hodan T, Michel F, Brachmann E, Kehl W, GlentBuch A, Kraft D, Drost B, Vidal J, Ihrke S, Zabulis X, et al. Bop: benchmark for 6d object pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV); 2018. p. 19–34. Hodan T, Michel F, Brachmann E, Kehl W, GlentBuch A, Kraft D, Drost B, Vidal J, Ihrke S, Zabulis X, et al. Bop: benchmark for 6d object pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV); 2018. p. 19–34.
40.
go back to reference Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K, Navab N. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: Asian conference on computer vision. Springer; 2012. p. 548–562. Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K, Navab N. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: Asian conference on computer vision. Springer; 2012. p. 548–562.
41.
go back to reference Hinterstoisser S, Holzer S, Cagniart C, Ilic S, Konolige K, Navab N, Lepetit V. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In: IEEE International Conference on Computer Vision; 2012. Hinterstoisser S, Holzer S, Cagniart C, Ilic S, Konolige K, Navab N, Lepetit V. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In: IEEE International Conference on Computer Vision; 2012.
42.
go back to reference Van Der Maaten L. Accelerating t-sne using tree-based algorithms. J Mach Learn Res 2014;15(1):3221–3245.MathSciNetMATH Van Der Maaten L. Accelerating t-sne using tree-based algorithms. J Mach Learn Res 2014;15(1):3221–3245.MathSciNetMATH
43.
go back to reference van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res 2008;9:2579–2605.MATH van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res 2008;9:2579–2605.MATH
Metadata
Title
SOAR Improved Artificial Neural Network for Multistep Decision-making Tasks
Publication date
06-03-2020
Published in
Cognitive Computation / Issue 3/2021
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-020-09716-6

Other articles of this Issue 3/2021

Cognitive Computation 3/2021 Go to the issue

Premium Partner