Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2017

01-09-2017

Sodium Hypochlorite Treatment and Nitinol Performance for Medical Devices

Authors: J. D. Weaver, E. J. Gutierrez, S. Nagaraja, P. R. Stafford, S. Sivan, M. Di Prima

Published in: Journal of Materials Engineering and Performance | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Processing of nitinol medical devices has evolved over the years as manufacturers have identified methods of reducing surface defects such as inclusions. One recent method proposes to soak nitinol medical devices in a 6% sodium hypochlorite (NaClO) solution as a means of identifying surface inclusions. Devices with surface inclusions could in theory then be removed from production because inclusions would interact with NaClO to form a visible black material on the nitinol surface. To understand the effects of an NaClO soak on performance, we compared as-received and NaClO-soaked nitinol wires with two different surface finishes (black oxide and electropolished). Pitting corrosion susceptibility was equivalent between the as-received and NaClO-soaked groups for both surface finishes. Nickel ion release increased in the NaClO-soaked group for black oxide nitinol, but was equivalent for electropolished nitinol. Fatigue testing revealed a lower fatigue life for NaClO-soaked black oxide nitinol at all alternating strains. With the exception of 0.83% alternating strain, NaClO-soaked and as-received electropolished nitinol had similar average fatigue life, but the NaClO-soaked group showed higher variability. NaClO-soaked electropolished nitinol had specimens with the lowest number of cycles to fracture for all alternating strains tested with the exception of the highest alternating strain 1.2%. The NaClO treatment identified only one specimen with surface inclusions and caused readily identifiable surface damage to the black oxide nitinol. Damage from the NaClO soak to electropolished nitinol surface also appears to have occurred and is likely the cause of the increased variability of the fatigue results. Overall, the NaClO soak appears to not lead to an improvement in nitinol performance and seems to be damaging to the nitinol surface in ways that may not be detectable with a simple visual inspection for black material on the nitinol surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.J. Mahtabi, N. Shamsaei, and M.R. Mitchell, Fatigue of Nitinol: The State-of-the-art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254CrossRef M.J. Mahtabi, N. Shamsaei, and M.R. Mitchell, Fatigue of Nitinol: The State-of-the-art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254CrossRef
2.
go back to reference T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. Struct Mater Prop Microstruct. Process., 1999, 273, p 149–160CrossRef T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. Struct Mater Prop Microstruct. Process., 1999, 273, p 149–160CrossRef
3.
go back to reference S.M. Russell, Design Considerations for Nitinol Bone Staples, J. Mater. Eng. Perform., 2009, 18(5–6), p 831–835CrossRef S.M. Russell, Design Considerations for Nitinol Bone Staples, J. Mater. Eng. Perform., 2009, 18(5–6), p 831–835CrossRef
4.
go back to reference A.R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M. Launey, and M.R. Mitchell, Rotary-Bending Fatigue Characteristics of Medical-Grade Nitinol Wire, J. Mech. Behav. Biomed. Mater., 2013, 27, p 19–32CrossRef A.R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M. Launey, and M.R. Mitchell, Rotary-Bending Fatigue Characteristics of Medical-Grade Nitinol Wire, J. Mech. Behav. Biomed. Mater., 2013, 27, p 19–32CrossRef
5.
go back to reference S. Sullivan, M. Dreher, J. Zheng, L. Chen, D. Madamba, K. Miyashiro, C. Trepanier, and S. Nagaraja, Effects of Oxide Layer Composition and Radial Compression on Nickel Release in Nitinol Stents, Shape Mem. Superelast., 2015, 1(3), p 319–327CrossRef S. Sullivan, M. Dreher, J. Zheng, L. Chen, D. Madamba, K. Miyashiro, C. Trepanier, and S. Nagaraja, Effects of Oxide Layer Composition and Radial Compression on Nickel Release in Nitinol Stents, Shape Mem. Superelast., 2015, 1(3), p 319–327CrossRef
6.
go back to reference Z.J. Bai and H.H. Rotermund, The Intrinsically High Pitting Corrosion Resistance of Mechanically Polished Nitinol in Simulated Physiological Solutions, J. Biomed. Mater. Res. Part B Appl. Biomater., 2011, 99b(1), p 1–13CrossRef Z.J. Bai and H.H. Rotermund, The Intrinsically High Pitting Corrosion Resistance of Mechanically Polished Nitinol in Simulated Physiological Solutions, J. Biomed. Mater. Res. Part B Appl. Biomater., 2011, 99b(1), p 1–13CrossRef
7.
go back to reference S. Shabalovskaya, G. Rondelli, J. Anderegg, J.P. Xiong, and M. Wu, Comparative Corrosion Performance of Black Oxide, Sandblasted, and Fine-Drawn Nitinol Wires in Potentiodynamic and Potentiostatic Tests: Effects of Chemical Etching and Electropolishing, J. Biomed. Mater. Res. Part B Appl. Biomater., 2004, 69b(2), p 223–231CrossRef S. Shabalovskaya, G. Rondelli, J. Anderegg, J.P. Xiong, and M. Wu, Comparative Corrosion Performance of Black Oxide, Sandblasted, and Fine-Drawn Nitinol Wires in Potentiodynamic and Potentiostatic Tests: Effects of Chemical Etching and Electropolishing, J. Biomed. Mater. Res. Part B Appl. Biomater., 2004, 69b(2), p 223–231CrossRef
8.
go back to reference ASTM F2063-12, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, 2012 ASTM F2063-12, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, 2012
9.
go back to reference M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, and G. Eggeler, Impurity Levels and Fatigue Lives of Pseudoelastic NiTi Shape Memory Alloys, Acta Mater., 2013, 61(10), p 3667–3686CrossRef M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, and G. Eggeler, Impurity Levels and Fatigue Lives of Pseudoelastic NiTi Shape Memory Alloys, Acta Mater., 2013, 61(10), p 3667–3686CrossRef
10.
go back to reference S.W. Robertson, M. Launey, O. Shelley, I. Ong, L. Vien, K. Senthilnathan, P. Saffari, S. Schlegel, and A.R. Pelton, A Statistical Approach to Understand the Role of Inclusions on the Fatigue Resistance of Superelastic Nitinol Wire and Tubing, J. Mech. Behav. Biomed. Mater., 2015, 51, p 119–131CrossRef S.W. Robertson, M. Launey, O. Shelley, I. Ong, L. Vien, K. Senthilnathan, P. Saffari, S. Schlegel, and A.R. Pelton, A Statistical Approach to Understand the Role of Inclusions on the Fatigue Resistance of Superelastic Nitinol Wire and Tubing, J. Mech. Behav. Biomed. Mater., 2015, 51, p 119–131CrossRef
11.
go back to reference M. Urbano, A. Cadelli, F. Sczerzenie, P. Luccarelli, S. Beretta, and A. Coda, Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications, Shape Mem. Superelast., 2015, 1(2), p 240–251CrossRef M. Urbano, A. Cadelli, F. Sczerzenie, P. Luccarelli, S. Beretta, and A. Coda, Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications, Shape Mem. Superelast., 2015, 1(2), p 240–251CrossRef
12.
go back to reference ASTM E1245–03(2016), Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM International, West Conshohocken, 2016 ASTM E1245–03(2016), Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM International, West Conshohocken, 2016
13.
go back to reference R. Rokicki, T. Hryniewicz, C. Pulletikurthi, K. Rokosz, and N. Munroe, Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices, J. Mater. Eng. Perform., 2015, 24(4), p 1634–1640CrossRef R. Rokicki, T. Hryniewicz, C. Pulletikurthi, K. Rokosz, and N. Munroe, Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices, J. Mater. Eng. Perform., 2015, 24(4), p 1634–1640CrossRef
14.
go back to reference R. Rokicki, W. Haider, and T. Hryniewicz, Influence of Sodium Hypochlorite Treatment of Electropolished and Magnetoelectropolished Nitinol Surfaces on Adhesion and Proliferation of MC3T3 Pre-Osteoblast Cells, J. Mater. Sci. Mater. Med., 2012, 23(9), p 2127–2139CrossRef R. Rokicki, W. Haider, and T. Hryniewicz, Influence of Sodium Hypochlorite Treatment of Electropolished and Magnetoelectropolished Nitinol Surfaces on Adhesion and Proliferation of MC3T3 Pre-Osteoblast Cells, J. Mater. Sci. Mater. Med., 2012, 23(9), p 2127–2139CrossRef
15.
go back to reference C.C. Lasley, M.R. Mitchell, B.A.Dooley, W.C. Bruchman, and C.P. Warner The Corrosion of Nitinol by Exposure to Decontamination Solutions, in SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies( 2004), pp. 375–384. C.C. Lasley, M.R. Mitchell, B.A.Dooley, W.C. Bruchman, and C.P. Warner The Corrosion of Nitinol by Exposure to Decontamination Solutions, in SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies( 2004), pp. 375–384.
16.
go back to reference M.K. Lonn, J.M. Metcalf, and B.D. Choules, In Vivo and In Vitro Nitinol Corrosion Properties, Shape Mem. Superelast., 2015, 1(3), p 328–338CrossRef M.K. Lonn, J.M. Metcalf, and B.D. Choules, In Vivo and In Vitro Nitinol Corrosion Properties, Shape Mem. Superelast., 2015, 1(3), p 328–338CrossRef
17.
go back to reference ASTM F2129–15, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, ASTM International, West Conshohocken, 2015 ASTM F2129–15, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, ASTM International, West Conshohocken, 2015
18.
go back to reference ASTM E2948–16a, Standard Test Method for Conducting Rotating Bending Fatigue Tests of Solid Round Fine Wire, ASTM International, West Conshohocken, 2016 ASTM E2948–16a, Standard Test Method for Conducting Rotating Bending Fatigue Tests of Solid Round Fine Wire, ASTM International, West Conshohocken, 2016
19.
20.
go back to reference L. Zhu, C. Trépanier, A. Pelton, and J.M. Fino, Oxidation of Nitinol and its Effect on Corrosion Resistance, in ASM Materials and Processes for Medical Devices, 2003, p 156–161 L. Zhu, C. Trépanier, A. Pelton, and J.M. Fino, Oxidation of Nitinol and its Effect on Corrosion Resistance, in ASM Materials and Processes for Medical Devices, 2003, p 156–161
21.
go back to reference B. Clarke, W. Carroll, Y. Rochev, M. Hynes, D. Bradley, and D. Plumley, Influence of Nitinol Wire Surface Treatment on Oxide Thickness and Composition and its Subsequent Effect on Corrosion Resistance and Nickel Ion Release, J. Biomed. Mater. Res. Part A, 2006, 79(1), p 61–70CrossRef B. Clarke, W. Carroll, Y. Rochev, M. Hynes, D. Bradley, and D. Plumley, Influence of Nitinol Wire Surface Treatment on Oxide Thickness and Composition and its Subsequent Effect on Corrosion Resistance and Nickel Ion Release, J. Biomed. Mater. Res. Part A, 2006, 79(1), p 61–70CrossRef
22.
go back to reference M. Di Prima, E. Gutierrez, and J.D. Weaver, The Effect of Fatigue on the Corrosion Resistance of Common Medical Alloys, J. Biomed. Mater. Res. Part B Appl. Biomater., 2016. doi:10.1002/jbm.b.33738 M. Di Prima, E. Gutierrez, and J.D. Weaver, The Effect of Fatigue on the Corrosion Resistance of Common Medical Alloys, J. Biomed. Mater. Res. Part B Appl. Biomater., 2016. doi:10.​1002/​jbm.​b.​33738
23.
go back to reference E. Berutti, E. Angelini, M. Rigolone, G. Migliaretti, and D. Pasqualini, Influence of Sodium Hypochlorite on Fracture Properties and Corrosion of ProTaper Rotary Instruments, Int. Endod. J., 2006, 39(9), p 693–699CrossRef E. Berutti, E. Angelini, M. Rigolone, G. Migliaretti, and D. Pasqualini, Influence of Sodium Hypochlorite on Fracture Properties and Corrosion of ProTaper Rotary Instruments, Int. Endod. J., 2006, 39(9), p 693–699CrossRef
24.
go back to reference O.A. Peters, J.O. Roehlike, and M.A. Baumann, Effect of Immersion in Sodium Hypochlorite on Torque and Fatigue Resistance of Nickel-Titanium Instruments, J. Endod., 2007, 33(5), p 589–593CrossRef O.A. Peters, J.O. Roehlike, and M.A. Baumann, Effect of Immersion in Sodium Hypochlorite on Torque and Fatigue Resistance of Nickel-Titanium Instruments, J. Endod., 2007, 33(5), p 589–593CrossRef
25.
go back to reference R.D. Martins, M.G.A. Bahia, and V.T.L. Buono, The Effect of Sodium Hypochlorite on the Surface Characteristics and Fatigue Resistance of ProFile Nickel-Titanium Instruments, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol., 2006, 102(4), p E99–E105CrossRef R.D. Martins, M.G.A. Bahia, and V.T.L. Buono, The Effect of Sodium Hypochlorite on the Surface Characteristics and Fatigue Resistance of ProFile Nickel-Titanium Instruments, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol., 2006, 102(4), p E99–E105CrossRef
26.
go back to reference E. Pedulla, N.M. Grande, G. Plotino, A. Pappalardo, and E. Rapisarda, Cyclic Fatigue Resistance of Three Different Nickel-Titanium Instruments after Immersion in Sodium Hypochlorite, J. Endod., 2011, 37(8), p 1139–1142CrossRef E. Pedulla, N.M. Grande, G. Plotino, A. Pappalardo, and E. Rapisarda, Cyclic Fatigue Resistance of Three Different Nickel-Titanium Instruments after Immersion in Sodium Hypochlorite, J. Endod., 2011, 37(8), p 1139–1142CrossRef
27.
go back to reference H.S. Topcuoglu, K. Pala, A. Akti, S. Duzgun, and G. Topcuoglu, Cyclic Fatigue Resistance of D-RaCe, ProTaper, and Mtwo Nickel-Titanium Retreatment Instruments After Immersion in Sodium Hypochlorite, Clin. Oral Invest., 2016, 20(6), p 1175–1179CrossRef H.S. Topcuoglu, K. Pala, A. Akti, S. Duzgun, and G. Topcuoglu, Cyclic Fatigue Resistance of D-RaCe, ProTaper, and Mtwo Nickel-Titanium Retreatment Instruments After Immersion in Sodium Hypochlorite, Clin. Oral Invest., 2016, 20(6), p 1175–1179CrossRef
28.
go back to reference R. Guidoin, Y. Marois, Y. Douville, M.W. King, M. Castonguay, A. Traore, M. Formichi, L.E. Staxrud, L. Norgren, P. Bergeron, J.P. Becquemin, J.M. Egana, and P.L. Harris, First-Generation Aortic Endografts: Analysis of Explanted Stentor Devices from the EUROSTAR Registry, J. Endovasc. Ther., 2000, 7(2), p 105–122CrossRef R. Guidoin, Y. Marois, Y. Douville, M.W. King, M. Castonguay, A. Traore, M. Formichi, L.E. Staxrud, L. Norgren, P. Bergeron, J.P. Becquemin, J.M. Egana, and P.L. Harris, First-Generation Aortic Endografts: Analysis of Explanted Stentor Devices from the EUROSTAR Registry, J. Endovasc. Ther., 2000, 7(2), p 105–122CrossRef
Metadata
Title
Sodium Hypochlorite Treatment and Nitinol Performance for Medical Devices
Authors
J. D. Weaver
E. J. Gutierrez
S. Nagaraja
P. R. Stafford
S. Sivan
M. Di Prima
Publication date
01-09-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2880-7

Other articles of this Issue 9/2017

Journal of Materials Engineering and Performance 9/2017 Go to the issue

Premium Partners