Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2019

01-03-2019 | Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Sol–gel-derived mineral scaffolds within SiO2–P2O5–CaO–MgO–ZnO–CaF2 system

Authors: Sorin-Ion Jinga, Izabela Constantinoiu, Vasile-Adrian Surdu, Florin Iordache, Cristina Busuioc

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ceramic scaffolds were prepared starting from a sol–gel powder, which was mixed with glucose as a pore-generating substance and subsequently thermally treated at different temperatures and for different periods in order to ensure the formation of a resistance structure. The final materials were characterized in terms of structure, morphology, and biological properties by employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, immersion in simulated body fluid, and specific cellular tests on mesenchymal stem cells (optical microscopy, MTT, and GSH assays). The results showed the occurrence of akermanite as the main crystalline phase in all scaffolds. The porosity and compression strength of these 3D architectures can be adjusted through the thermal treatment parameters. Moreover, the biological evaluation indicated an excellent bioactivity and a good biocompatibility at short term for all samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Palmero P, Cambier F, De Barra E (2017) Advances in ceramic biomaterials: materials, devices and challenges. Woodhead Publishing, Duxford Palmero P, Cambier F, De Barra E (2017) Advances in ceramic biomaterials: materials, devices and challenges. Woodhead Publishing, Duxford
2.
go back to reference Li B, Webster T (2017) Orthopedic biomaterials: advances and applications. Springer Li B, Webster T (2017) Orthopedic biomaterials: advances and applications. Springer
3.
go back to reference Parthasarathy J (2014) 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 4:9–18CrossRef Parthasarathy J (2014) 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 4:9–18CrossRef
4.
go back to reference Simonis P, Dufour T, Tenenbaum H (2010) Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 21:772–777CrossRef Simonis P, Dufour T, Tenenbaum H (2010) Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 21:772–777CrossRef
5.
go back to reference Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R. 87:1–57CrossRef Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R. 87:1–57CrossRef
6.
go back to reference Choi HW, Park YS, Chung SH, Jung MH, Moon W, Rhee SH (2017) Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants. Korean J Orthod. 47:229–237CrossRef Choi HW, Park YS, Chung SH, Jung MH, Moon W, Rhee SH (2017) Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants. Korean J Orthod. 47:229–237CrossRef
7.
go back to reference Ohtsuki C, Kamitakahara M, Miyazaki T (2009) Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration J R Soc Interface 6:S349–360CrossRef Ohtsuki C, Kamitakahara M, Miyazaki T (2009) Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration J R Soc Interface 6:S349–360CrossRef
8.
go back to reference Xiong K, Shi H, Liu J, Shen Z, Li H, Ye J (2013) Control of the dissolution of Ca and Si ions from CaSiO3 bioceramic via tailoring its surface structure and chemical composition. J Am Ceram Soc. 96:691–696CrossRef Xiong K, Shi H, Liu J, Shen Z, Li H, Ye J (2013) Control of the dissolution of Ca and Si ions from CaSiO3 bioceramic via tailoring its surface structure and chemical composition. J Am Ceram Soc. 96:691–696CrossRef
9.
go back to reference Vlasea M, Pilliar R, Toyserkani E (2015) Control of structural and mechanical properties in bioceramic bone substitutes via additive manufacturing layer stacking orientation. Addit Manuf. 6:30–38CrossRef Vlasea M, Pilliar R, Toyserkani E (2015) Control of structural and mechanical properties in bioceramic bone substitutes via additive manufacturing layer stacking orientation. Addit Manuf. 6:30–38CrossRef
10.
go back to reference Guo WG, Qiu ZY, Cui H, Wang CM, Zhang XJ, Lee IS, Dong YQ, Cui FZ (2013) Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics. Front Mater Sci. 7:190–195CrossRef Guo WG, Qiu ZY, Cui H, Wang CM, Zhang XJ, Lee IS, Dong YQ, Cui FZ (2013) Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics. Front Mater Sci. 7:190–195CrossRef
11.
go back to reference Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016) Sol-gel based materials for biomedical applications. Prog Mater Sci. 77:1–79CrossRef Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016) Sol-gel based materials for biomedical applications. Prog Mater Sci. 77:1–79CrossRef
12.
go back to reference Lkhagvajav N, Yasa I, Celik E, Koizhaiganova M, Sari O (2011) Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig J Nanomater Biostruct. 6:149–154 Lkhagvajav N, Yasa I, Celik E, Koizhaiganova M, Sari O (2011) Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig J Nanomater Biostruct. 6:149–154
13.
go back to reference Oprea O, Ghitulica CD, Voicu G, Vasile BS, Oprea A (2013) Synthesis and photocatalytic properties of Fe(III)-doped TiO2 prepared by sol-gel method. Rom J Mater. 43:408–413 Oprea O, Ghitulica CD, Voicu G, Vasile BS, Oprea A (2013) Synthesis and photocatalytic properties of Fe(III)-doped TiO2 prepared by sol-gel method. Rom J Mater. 43:408–413
14.
go back to reference Busuioc AD, Enuta R, Stoleriu S, Oprea O, Visan T (2017) SnO2 powders doped with La3+ or V5+. Rom J Mater. 47:293–297 Busuioc AD, Enuta R, Stoleriu S, Oprea O, Visan T (2017) SnO2 powders doped with La3+ or V5+. Rom J Mater. 47:293–297
15.
go back to reference Constantin CP, Slatineanu T, Palamaru M, Iordan A, Caltun OF (2012) CoxZnx-1Fe2O4 Nanoparticles ferrite series as magnetic resonance imaging contrast agents. Dig J Nanomater Biostruct. 7:1793–1798 Constantin CP, Slatineanu T, Palamaru M, Iordan A, Caltun OF (2012) CoxZnx-1Fe2O4 Nanoparticles ferrite series as magnetic resonance imaging contrast agents. Dig J Nanomater Biostruct. 7:1793–1798
16.
go back to reference Voicu G, Ene VL, Sava DF, Surdu VA, Busuioc C (2016) Sol-gel derived vitroceramic materials for biomedical applications. J Non-Cryst Solids 449:75–82CrossRef Voicu G, Ene VL, Sava DF, Surdu VA, Busuioc C (2016) Sol-gel derived vitroceramic materials for biomedical applications. J Non-Cryst Solids 449:75–82CrossRef
17.
go back to reference Laczka M, Cholewa-Kowalska K, Osyczka AM (2016) Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants. Ceram Int. 42:14313–14325CrossRef Laczka M, Cholewa-Kowalska K, Osyczka AM (2016) Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants. Ceram Int. 42:14313–14325CrossRef
18.
go back to reference Raucci MG, Demitri C, Soriente A, Fasolino I, Sannino A, Ambrosio L (2018) Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects. J Biomed Mater Res A 106:2007–2019CrossRef Raucci MG, Demitri C, Soriente A, Fasolino I, Sannino A, Ambrosio L (2018) Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects. J Biomed Mater Res A 106:2007–2019CrossRef
19.
go back to reference Fathi MH, Doost Mohammadi A (2008) Preparation and characterization of sol-gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A 474:128–133CrossRef Fathi MH, Doost Mohammadi A (2008) Preparation and characterization of sol-gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A 474:128–133CrossRef
20.
go back to reference Almeida RM, Gama A, Vueva Y (2011) Bioactive sol-gel scaffolds with dual porosity for tissue engineering. J Sol-Gel Sci Technol. 57:336–342CrossRef Almeida RM, Gama A, Vueva Y (2011) Bioactive sol-gel scaffolds with dual porosity for tissue engineering. J Sol-Gel Sci Technol. 57:336–342CrossRef
21.
go back to reference Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol. 3:202CrossRef Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol. 3:202CrossRef
22.
go back to reference Gao C, Deng Y, Feng P, Mao Z, Li P, Yang B, Deng J, Cao Y, Shuai C, Peng S (2014) Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci. 15:4714–4732CrossRef Gao C, Deng Y, Feng P, Mao Z, Li P, Yang B, Deng J, Cao Y, Shuai C, Peng S (2014) Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci. 15:4714–4732CrossRef
23.
go back to reference Busuioc C, Voicu G, Zuzu ID, Miu D, Sima C, Iordache F, Jinga SI (2017) Vitroceramic coatings deposited by laser ablation on Ti-Zr substrates for implantable medical applications with improved biocompatibility. Ceram Int. 43:5498–5504CrossRef Busuioc C, Voicu G, Zuzu ID, Miu D, Sima C, Iordache F, Jinga SI (2017) Vitroceramic coatings deposited by laser ablation on Ti-Zr substrates for implantable medical applications with improved biocompatibility. Ceram Int. 43:5498–5504CrossRef
24.
go back to reference Wang X, Li X, Ito A, Sogo Y (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater. 7:3638–3644CrossRef Wang X, Li X, Ito A, Sogo Y (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater. 7:3638–3644CrossRef
25.
go back to reference Vitale-Brovarone C, Baino F, Verne E (2009) High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci. 20:643–653 Vitale-Brovarone C, Baino F, Verne E (2009) High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci. 20:643–653
26.
go back to reference Yin P, Yuan JW, Liu LH, Xiao T, Lei T (2017) Effect of ZrO2 on the bioactivity properties of gel-derived CaO–P2O5–SiO2–SrO glasses. Ceram Int. 43:9691–9698CrossRef Yin P, Yuan JW, Liu LH, Xiao T, Lei T (2017) Effect of ZrO2 on the bioactivity properties of gel-derived CaO–P2O5–SiO2–SrO glasses. Ceram Int. 43:9691–9698CrossRef
27.
go back to reference Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 24:721–734CrossRef
28.
go back to reference Vybrant MTT Cell Proliferation Assay Kit (V13154) (2002) Molecular Probes Vybrant MTT Cell Proliferation Assay Kit (V13154) (2002) Molecular Probes
29.
go back to reference GSH-Glo Glutathione Assay (V6911 and V6912) (2015) Promega Corporation GSH-Glo Glutathione Assay (V6911 and V6912) (2015) Promega Corporation
30.
go back to reference Mihailova IK, Radev L, Aleksandrova VA (2015) Colova IV, Salvado IMM, Fernandes M.H.V. Novel merwinite/akermanite ceramics: in vitro bioactivity. Bulg Chem Commun. 47:253–260 Mihailova IK, Radev L, Aleksandrova VA (2015) Colova IV, Salvado IMM, Fernandes M.H.V. Novel merwinite/akermanite ceramics: in vitro bioactivity. Bulg Chem Commun. 47:253–260
31.
go back to reference Kansal I, Goel A, Tulyaganov DU, Rajagopal RR, Ferreira JMF (2012) Structural and thermal characterization of CaO–MgO–SiO2–P2O5–CaF2 glasses. J Eur Ceram Soc. 32:2739–2746CrossRef Kansal I, Goel A, Tulyaganov DU, Rajagopal RR, Ferreira JMF (2012) Structural and thermal characterization of CaO–MgO–SiO2–P2O5–CaF2 glasses. J Eur Ceram Soc. 32:2739–2746CrossRef
32.
go back to reference Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N (2011) Composition-structure-property relationships of the CaO–MxOy–SiO2–P2O5 (M=Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem. 21:9208–9218CrossRef Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N (2011) Composition-structure-property relationships of the CaO–MxOy–SiO2–P2O5 (M=Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem. 21:9208–9218CrossRef
33.
go back to reference Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K (2009) In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 30:5041–5048CrossRef Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K (2009) In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 30:5041–5048CrossRef
34.
go back to reference Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ (2015) Characterization of novel akermanite:poly-ε-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering. J Tissue Eng Regen Med. 9:389–404CrossRef Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ (2015) Characterization of novel akermanite:poly-ε-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering. J Tissue Eng Regen Med. 9:389–404CrossRef
35.
go back to reference Xia L, Yin Z, Mao L, Wang X, Liu J, Jiang X, Zhang Z, Lin K, Chang J, Fang B (2016) Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Sci Rep. 6:22005CrossRef Xia L, Yin Z, Mao L, Wang X, Liu J, Jiang X, Zhang Z, Lin K, Chang J, Fang B (2016) Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Sci Rep. 6:22005CrossRef
Metadata
Title
Sol–gel-derived mineral scaffolds within SiO2–P2O5–CaO–MgO–ZnO–CaF2 system
Authors
Sorin-Ion Jinga
Izabela Constantinoiu
Vasile-Adrian Surdu
Florin Iordache
Cristina Busuioc
Publication date
01-03-2019
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2019
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-019-04935-2

Other articles of this Issue 2/2019

Journal of Sol-Gel Science and Technology 2/2019 Go to the issue

Brief Communication: Characterization methods of sol-gel and hybrid materials

Lanthanide substitution effects in iron containing garnets

Original Paper: Fundamentals of sol-gel and hybrid materials processing

Preparation of cerium dioxide microspheres by internal gelation with cerium citrate as precursor

Original Paper: Sol–gel and hybrid materials for biological and health (medical) applications

Silver/Selenium/Chitosan-doped Hydroxyapatite coatings on biological NiTi alloy: In vitro biodegradation analysis

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Moth-eye-like antireflection coatings based on close-packed solid/hollow silica nanospheres

Original Paper: Educational aspects of sol-gel and hybrid materials

Molecular aspects on the amino acid-mediated sol–gel process of tetramethoxysilane in water

Premium Partners