Skip to main content
Top

2019 | OriginalPaper | Chapter

Solar Heating, Cooling and Power Generation—Current Profiles and Future Potentials

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the large amount of consumption of the fossil fuels, the ecological environment has suffered serious pollution and damage. Solar power technologies provide the best solution to the current energy and environment issues. In past decades, global solar thermal capacity increased rapidly, and now it has been used worldwide to provide heating, cooling and power generation. However, after years of development, solar energy utilization technology still faces problems such as low efficiency, high cost, difficulty in energy storage and unstable energy supply, which have been seriously restricting its applications. This chapter briefly summarizes the concept and classification of solar heating, cooling and power generation. Furthermore, some technology development and potential applications relating to solar heating, cooling and power generation are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marken C (2009) Solar collectors: behind the glass. Home Power 133:70–76 Marken C (2009) Solar collectors: behind the glass. Home Power 133:70–76
2.
go back to reference Norton B (2011) Solar water heaters: a review of systems research and design innovation. Green 1:189–207. ISSN (Online) 1869-8778 Norton B (2011) Solar water heaters: a review of systems research and design innovation. Green 1:189–207. ISSN (Online) 1869-8778
4.
go back to reference Dagdougui H et al (2011) Thermal analysis and performance optimization of a solar water heater flat plate collector: application to Tétouan (Morocco). Renew Sustain Energy Rev 15(1):630–638CrossRef Dagdougui H et al (2011) Thermal analysis and performance optimization of a solar water heater flat plate collector: application to Tétouan (Morocco). Renew Sustain Energy Rev 15(1):630–638CrossRef
5.
go back to reference Michaelides I et al (2011) Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters. J Renew Sustain Energy 3(3):033103CrossRef Michaelides I et al (2011) Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters. J Renew Sustain Energy 3(3):033103CrossRef
6.
go back to reference Zheng H et al (2014) Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector. Appl Energy 116:159–166CrossRef Zheng H et al (2014) Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector. Appl Energy 116:159–166CrossRef
7.
go back to reference Fiaschi D, Manfrida G (2013) Model to predict design parameters and performance curves of vacuum glass heat pipe solar collectors. Energy 58:28–35CrossRef Fiaschi D, Manfrida G (2013) Model to predict design parameters and performance curves of vacuum glass heat pipe solar collectors. Energy 58:28–35CrossRef
8.
go back to reference Reid RL (2001) Long-term experience with an active solar space heating system. J SolEnergy Eng 123(3):258 Reid RL (2001) Long-term experience with an active solar space heating system. J SolEnergy Eng 123(3):258
9.
go back to reference Waqas A, Kumar S (2013) Phase change material (Pcm)-based solar air heating system for residential space heating in winter. Int J Green Energy 10(4):402–426CrossRef Waqas A, Kumar S (2013) Phase change material (Pcm)-based solar air heating system for residential space heating in winter. Int J Green Energy 10(4):402–426CrossRef
10.
go back to reference Argiriou A et al (1997) Active solar space heating of residential buildings in Northern Hellas—a case study. Energy Build 26(2):215–221CrossRef Argiriou A et al (1997) Active solar space heating of residential buildings in Northern Hellas—a case study. Energy Build 26(2):215–221CrossRef
11.
go back to reference Wang F et al (2012) A feasibility study on solar-wall systems for domestic heating—an affordable solution for fuel poverty. Sol Energy 86(9):2405–2415CrossRef Wang F et al (2012) A feasibility study on solar-wall systems for domestic heating—an affordable solution for fuel poverty. Sol Energy 86(9):2405–2415CrossRef
12.
go back to reference Lu W et al (1986) Research on thermal engineering design of passive solar house with direct revenue. J Solar Energy (03):295–302 Lu W et al (1986) Research on thermal engineering design of passive solar house with direct revenue. J Solar Energy (03):295–302
13.
go back to reference Xiao W et al (2010) Thermal analysis of a retrofitted direct-gain solar house without auxiliary heat source in Southwest Tibet. Int J Low-Carbon Technol 5(4):175–181CrossRef Xiao W et al (2010) Thermal analysis of a retrofitted direct-gain solar house without auxiliary heat source in Southwest Tibet. Int J Low-Carbon Technol 5(4):175–181CrossRef
14.
go back to reference Ghaffarianhoseini A et al (2016) Exploring the advantages and challenges of double-skin façades (DSFs). Renew Sustain Energy Rev 60:1052–1065CrossRef Ghaffarianhoseini A et al (2016) Exploring the advantages and challenges of double-skin façades (DSFs). Renew Sustain Energy Rev 60:1052–1065CrossRef
15.
go back to reference Hashemi N et al (2010) Thermal behavior of a ventilated double skin facade in hot arid climate. Energy Build 42(10):1823–1832CrossRef Hashemi N et al (2010) Thermal behavior of a ventilated double skin facade in hot arid climate. Energy Build 42(10):1823–1832CrossRef
16.
go back to reference Darkwa J et al (2014) Heat transfer and air movement behavior in a double-skin façade. Sustain Cities Soc 10:130–139CrossRef Darkwa J et al (2014) Heat transfer and air movement behavior in a double-skin façade. Sustain Cities Soc 10:130–139CrossRef
17.
go back to reference Khalifa I et al (2017) Assessment of the inner skin composition impact on the double-skin Façade energy performance in the Mediterranean climate. Energy Procedia 111:195–204CrossRef Khalifa I et al (2017) Assessment of the inner skin composition impact on the double-skin Façade energy performance in the Mediterranean climate. Energy Procedia 111:195–204CrossRef
18.
go back to reference Barbosa S, Ip K (2014) Perspectives of double skin façades for naturally ventilated buildings: a review. Renew Sustain Energy Rev 40:1019–1029CrossRef Barbosa S, Ip K (2014) Perspectives of double skin façades for naturally ventilated buildings: a review. Renew Sustain Energy Rev 40:1019–1029CrossRef
19.
go back to reference Stazi F et al (2012) The behavior of solar walls in residential buildings with different insulation levels: an experimental and numerical study. Energy Build 47:217–229CrossRef Stazi F et al (2012) The behavior of solar walls in residential buildings with different insulation levels: an experimental and numerical study. Energy Build 47:217–229CrossRef
20.
go back to reference Saadian O et al (2012) Trombe walls: a review of opportunities and challenges in research and development. Renew Sustain Energy Rev 16(8):6340–6351CrossRef Saadian O et al (2012) Trombe walls: a review of opportunities and challenges in research and development. Renew Sustain Energy Rev 16(8):6340–6351CrossRef
21.
go back to reference Hu Z et al (2017) A review on the application of Trombe wall system in buildings. Renew Sustain Energy Rev 70:976–987CrossRef Hu Z et al (2017) A review on the application of Trombe wall system in buildings. Renew Sustain Energy Rev 70:976–987CrossRef
22.
go back to reference Al-Karaghouli A, Kazmerski LL (2010) Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software. Sol Energy 84(4):710–714CrossRef Al-Karaghouli A, Kazmerski LL (2010) Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software. Sol Energy 84(4):710–714CrossRef
23.
go back to reference Wu T, Lei C (2016) Thermal modelling and experimental validation of a semi-transparent water wall system for Sydney climate. Sol Energy 136:533–546CrossRef Wu T, Lei C (2016) Thermal modelling and experimental validation of a semi-transparent water wall system for Sydney climate. Sol Energy 136:533–546CrossRef
24.
go back to reference Zalewski L et al (2012) Experimental study of small-scale solar wall integrating phase change material. Sol Energy 86(1):208–219CrossRef Zalewski L et al (2012) Experimental study of small-scale solar wall integrating phase change material. Sol Energy 86(1):208–219CrossRef
25.
go back to reference Shen J et al (2007) Numerical study on thermal behavior of classical or composite Trombe solar walls. Energy Build 39(8):962–974CrossRef Shen J et al (2007) Numerical study on thermal behavior of classical or composite Trombe solar walls. Energy Build 39(8):962–974CrossRef
26.
go back to reference Corasaniti S et al (2017) Numerical simulation of modified Trombe-Michel walls with exergy and energy analysis. Int Commun Heat Mass Transfer 88:269–276CrossRef Corasaniti S et al (2017) Numerical simulation of modified Trombe-Michel walls with exergy and energy analysis. Int Commun Heat Mass Transfer 88:269–276CrossRef
27.
go back to reference Behzadi S, Farid MM (2014) Long term thermal stability of organic PCMs. Appl Energy 122:11–16CrossRef Behzadi S, Farid MM (2014) Long term thermal stability of organic PCMs. Appl Energy 122:11–16CrossRef
28.
go back to reference Heim D, Clarke JA (2004) Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r. Energy Build 36(8):795–805CrossRef Heim D, Clarke JA (2004) Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r. Energy Build 36(8):795–805CrossRef
29.
go back to reference Fiorito F (2012) Trombe walls for lightweight buildings in temperate and hot climates. Exploring the use of phase-change materials for performances improvement. Energy Procedia 30:1110–1119CrossRef Fiorito F (2012) Trombe walls for lightweight buildings in temperate and hot climates. Exploring the use of phase-change materials for performances improvement. Energy Procedia 30:1110–1119CrossRef
30.
go back to reference Sun D, Wang L (2016) Research on heat transfer performance of passive solar collector-storage wall system with phase change materials. Energy Build 119:183–188CrossRef Sun D, Wang L (2016) Research on heat transfer performance of passive solar collector-storage wall system with phase change materials. Energy Build 119:183–188CrossRef
31.
go back to reference Leang E et al (2017) Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 122:1009–1014CrossRef Leang E et al (2017) Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 122:1009–1014CrossRef
32.
go back to reference Oliveira Panão MJN et al (2012) Solar load ratio and ISO 13790 methodologies: indirect gains from sunspaces. Energy Build 51:212–222CrossRef Oliveira Panão MJN et al (2012) Solar load ratio and ISO 13790 methodologies: indirect gains from sunspaces. Energy Build 51:212–222CrossRef
37.
go back to reference Zeyghami MD, Goswami Y, Stefanakos E (2015) A review of solar thermo-mechanical refrigeration and cooling methods. Renew Sustain Energy Rev 51:1428–1445CrossRef Zeyghami MD, Goswami Y, Stefanakos E (2015) A review of solar thermo-mechanical refrigeration and cooling methods. Renew Sustain Energy Rev 51:1428–1445CrossRef
38.
go back to reference Otanicar T, Taylor RA, Phelan PE (2012) Prospects for solar cooling—an economic and environmental assessment. Sol Energy 86(5):1287–1299CrossRef Otanicar T, Taylor RA, Phelan PE (2012) Prospects for solar cooling—an economic and environmental assessment. Sol Energy 86(5):1287–1299CrossRef
39.
go back to reference Sarbu I, Sebarchievici C (2013) Review of solar refrigeration and cooling systems. Energy Build 67:286–297CrossRef Sarbu I, Sebarchievici C (2013) Review of solar refrigeration and cooling systems. Energy Build 67:286–297CrossRef
40.
go back to reference Balaras CA et al (2007) Solar air conditioning in Europe—an overview. Renew Sustain Energy Rev 11(2):299–314CrossRef Balaras CA et al (2007) Solar air conditioning in Europe—an overview. Renew Sustain Energy Rev 11(2):299–314CrossRef
41.
go back to reference Zhai XQ, Wang RZ (2009) A review for absorbtion and adsorption solar cooling systems in China. Renew Sustain Energy Rev 13(6-7):1523–1531CrossRef Zhai XQ, Wang RZ (2009) A review for absorbtion and adsorption solar cooling systems in China. Renew Sustain Energy Rev 13(6-7):1523–1531CrossRef
42.
go back to reference Fong KF et al (2010) Comparative study of different solar cooling systems for buildings in subtropical city. Sol Energy 84(2):227–244CrossRef Fong KF et al (2010) Comparative study of different solar cooling systems for buildings in subtropical city. Sol Energy 84(2):227–244CrossRef
43.
go back to reference Allouhi A et al (2015) Solar driven cooling systems: an updated review. Renew Sustain Energy Rev 44:159–181CrossRef Allouhi A et al (2015) Solar driven cooling systems: an updated review. Renew Sustain Energy Rev 44:159–181CrossRef
44.
go back to reference Kim DS, Ferreira CAI (2008) Solar refrigeration options—a state-of-the-art review. Int J Refrig 31(1):3–15CrossRef Kim DS, Ferreira CAI (2008) Solar refrigeration options—a state-of-the-art review. Int J Refrig 31(1):3–15CrossRef
45.
go back to reference Kongtragool B, Wongwises S (2003) A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew Sustain Energy Rev 7(2):131–154CrossRef Kongtragool B, Wongwises S (2003) A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew Sustain Energy Rev 7(2):131–154CrossRef
46.
go back to reference Abdulateef JM et al (2009) Review on solar-driven ejector refrigeration technologies. Renew Sustain Energy Rev 13(6-7):1338–1349CrossRef Abdulateef JM et al (2009) Review on solar-driven ejector refrigeration technologies. Renew Sustain Energy Rev 13(6-7):1338–1349CrossRef
47.
go back to reference Sankarlal T, Mani A (2007) Experimental investigations on ejector refrigeration system with ammonia. Renew Energy 32(8):1403–1413CrossRef Sankarlal T, Mani A (2007) Experimental investigations on ejector refrigeration system with ammonia. Renew Energy 32(8):1403–1413CrossRef
48.
go back to reference Lazzarin RM (2014) Solar cooling: PV or thermal? A thermodynamic and economic analysis. Int J Refrig 39:38–47CrossRef Lazzarin RM (2014) Solar cooling: PV or thermal? A thermodynamic and economic analysis. Int J Refrig 39:38–47CrossRef
49.
go back to reference Sarbu I, Dorca A (2018) A comprehensive review of solar thermoelectric cooling systems. Int J Energy Res 42(2):395–415CrossRef Sarbu I, Dorca A (2018) A comprehensive review of solar thermoelectric cooling systems. Int J Energy Res 42(2):395–415CrossRef
50.
go back to reference Riffat S, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23(8):913–935CrossRef Riffat S, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23(8):913–935CrossRef
51.
go back to reference Liu ZB et al (2015) Review of solar thermoelectric cooling technologies for use in zero energy buildings. Energy Build 102:207–216CrossRef Liu ZB et al (2015) Review of solar thermoelectric cooling technologies for use in zero energy buildings. Energy Build 102:207–216CrossRef
52.
go back to reference Papoutsis EG, Koronaki IP, Papaefthimiou VD (2017) Numerical simulation and parametric study of different types of solar cooling systems under Mediterranean climatic conditions. Energy Build 138:601–611CrossRef Papoutsis EG, Koronaki IP, Papaefthimiou VD (2017) Numerical simulation and parametric study of different types of solar cooling systems under Mediterranean climatic conditions. Energy Build 138:601–611CrossRef
53.
go back to reference Anand S, Gupta A, Tyagi SK (2015) Solar cooling systems for climate change mitigation: a review. Renew Sustain Energy Rev 41:143–161CrossRef Anand S, Gupta A, Tyagi SK (2015) Solar cooling systems for climate change mitigation: a review. Renew Sustain Energy Rev 41:143–161CrossRef
54.
go back to reference Eicker U et al (2014) Energy and economic performance of solar cooling systems worldwide. Energy Procedia 57:2581–2589CrossRef Eicker U et al (2014) Energy and economic performance of solar cooling systems worldwide. Energy Procedia 57:2581–2589CrossRef
55.
go back to reference Hwang Y et al (2008) Review of solar cooling technologies. Hvar & R Res 14(3):507–528 Hwang Y et al (2008) Review of solar cooling technologies. Hvar & R Res 14(3):507–528
56.
go back to reference Pintaldi S et al (2017) Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl Energy 188:160–177CrossRef Pintaldi S et al (2017) Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl Energy 188:160–177CrossRef
57.
go back to reference Brancato V et al (2017) Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Mater Solar Cells 160:225–232CrossRef Brancato V et al (2017) Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Mater Solar Cells 160:225–232CrossRef
58.
go back to reference Gil A et al (2014) Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int J Refrig 39:95–103CrossRef Gil A et al (2014) Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int J Refrig 39:95–103CrossRef
59.
go back to reference Baniyounes AM et al (2014) An overview of solar cooling technologies markets development and its managerial aspects. Energy Procedia 61:1864–1869CrossRef Baniyounes AM et al (2014) An overview of solar cooling technologies markets development and its managerial aspects. Energy Procedia 61:1864–1869CrossRef
60.
go back to reference Ferreira CI, Kim D-S (2014) Techno-economic review of solar cooling technologies based on location-specific data. Int J Refrig 39:23–37 Ferreira CI, Kim D-S (2014) Techno-economic review of solar cooling technologies based on location-specific data. Int J Refrig 39:23–37
61.
go back to reference Visek E, Mazzrella L, Motta M (2014) Performance analysis of a solar cooling system using self-tuning fuzzy-PID control with TRNSYS. Energy Procedia 57:2609–2618CrossRef Visek E, Mazzrella L, Motta M (2014) Performance analysis of a solar cooling system using self-tuning fuzzy-PID control with TRNSYS. Energy Procedia 57:2609–2618CrossRef
62.
go back to reference Asim M, Dewsbury J, Kanan S (2016) TRNSYS simulation of a solar cooling system for the hot climate of Pakistan. Energy Procedia 91:702–706CrossRef Asim M, Dewsbury J, Kanan S (2016) TRNSYS simulation of a solar cooling system for the hot climate of Pakistan. Energy Procedia 91:702–706CrossRef
63.
go back to reference Kopasaki E, Nazos A, Psomopoulos CS (2015) A review of solar cooling in EU. Adsorption 2: H2O Kopasaki E, Nazos A, Psomopoulos CS (2015) A review of solar cooling in EU. Adsorption 2: H2O
64.
go back to reference Da Costa MVA et al (2013) Viability and application of ethanol production coupled with solar cooling. Appl Energy 102:501–509CrossRef Da Costa MVA et al (2013) Viability and application of ethanol production coupled with solar cooling. Appl Energy 102:501–509CrossRef
65.
go back to reference Best R et al (2013) Solar cooling in the food industry in Mexico: a case study. Appl Therm Eng 50(2):1447–1452 Best R et al (2013) Solar cooling in the food industry in Mexico: a case study. Appl Therm Eng 50(2):1447–1452
66.
go back to reference Davies PA (2005) A solar cooling system for greenhouse food production in hot climates. Sol Energy 79(6):661–668CrossRef Davies PA (2005) A solar cooling system for greenhouse food production in hot climates. Sol Energy 79(6):661–668CrossRef
67.
go back to reference Jiang ZQ, Chen Y, Zhou X, Jin JX (2011) Investigation of solar thermal power technology. In: International conference on applied superconductivity and electromagnetic devices, pp 275–281 Jiang ZQ, Chen Y, Zhou X, Jin JX (2011) Investigation of solar thermal power technology. In: International conference on applied superconductivity and electromagnetic devices, pp 275–281
68.
go back to reference Goswami DY, Kreith F, Kreider JF (1978) Principles of solar engineering. McGraw-Hill Book Co Goswami DY, Kreith F, Kreider JF (1978) Principles of solar engineering. McGraw-Hill Book Co
69.
go back to reference Dobrzański LA, Drygała A, Giedro M (2010) Application of crystalline silicon solar cells in photovoltaic modules. Arch Mater Sci Eng 44 Dobrzański LA, Drygała A, Giedro M (2010) Application of crystalline silicon solar cells in photovoltaic modules. Arch Mater Sci Eng 44
70.
go back to reference Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation—a review. Renew Sustain Energy Rev 55:414–425CrossRef Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation—a review. Renew Sustain Energy Rev 55:414–425CrossRef
71.
go back to reference Zhang S, Wu ZH, Zhao RD, Yu GY, Dai W, Luo EC (2014) Study on a basic unit of a double-acting thermoacoustic heat engine used for dish solar power. Energy Convers Manage 85:718–726CrossRef Zhang S, Wu ZH, Zhao RD, Yu GY, Dai W, Luo EC (2014) Study on a basic unit of a double-acting thermoacoustic heat engine used for dish solar power. Energy Convers Manage 85:718–726CrossRef
72.
go back to reference Xu C, Guo Y (2016) Modeling research on a solar tower thermal collection-natural gas turbine power generation system. In: International symposium on computational intelligence and design, pp 441–444 Xu C, Guo Y (2016) Modeling research on a solar tower thermal collection-natural gas turbine power generation system. In: International symposium on computational intelligence and design, pp 441–444
73.
go back to reference Cheng Y, Zhou F, Jianhua LV, Du J (2014) Research on distributed power generation measurement technology. In: 2014 IEEE workshop on electronics, computer and applications, pp 39–42 Cheng Y, Zhou F, Jianhua LV, Du J (2014) Research on distributed power generation measurement technology. In: 2014 IEEE workshop on electronics, computer and applications, pp 39–42
74.
75.
go back to reference Popoola IK, Gondal MA, Qahtan TF (2018) Recent progress in flexible perovskite solar cells: materials, mechanical tolerance and stability. Renew Sustain Energy Rev 82:3127–3151CrossRef Popoola IK, Gondal MA, Qahtan TF (2018) Recent progress in flexible perovskite solar cells: materials, mechanical tolerance and stability. Renew Sustain Energy Rev 82:3127–3151CrossRef
76.
go back to reference Zhu W, Deng Y, Wang Y, Shen S, Gulfam R (2016) High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy 100:91–101CrossRef Zhu W, Deng Y, Wang Y, Shen S, Gulfam R (2016) High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy 100:91–101CrossRef
Metadata
Title
Solar Heating, Cooling and Power Generation—Current Profiles and Future Potentials
Authors
Wei He
Xinghui Zhang
Xingxing Zhang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17283-1_2