Skip to main content
Top

2018 | OriginalPaper | Chapter

Solar Thermal Energy Storage

Authors : Aniket D. Monde, Amit Shrivastava, Prodyut R. Chakraborty

Published in: Applications of Solar Energy

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past few decades, considerable research efforts have been devoted to improve the usage of renewable energy resources. Till date, major energy demands have been addressed by fossil fuels, and the limited resource of these precious fuels is continuously depleting at an alarming rate. Increase in the energy demands, deficiency of fossil fuels, and influence of pollution on the environment have forced us to opt for renewable energy resources. Solar energy is a natural source of energy that is not depleted by its use. It is a promising option for replacing conventional energy resources partially or totally, but it is transient, intermittent, and unpredictable in nature. Because of this sporadic nature of solar energy across a given interval of hours, days, and season, various practical problems arise. Variable DNI causes power plants to shut down for few hours of the day or to run at part load most of the time. This creates a demand for an effective subsystem which is capable of storing energy when available solar energy overshoots the demand during the interval of radiant sunshine, and to make it accessible during night or season. A similar problem arises for waste heat recovery systems where accessibility of waste heat and usage period are not the same, and thus creates a need for thermal energy storage (TES) for energy conservation. TES has tempted a lot of researchers to improve its high energy storage capacity and efficiency. If solar energy system is not run with TES, a considerable section of energy demand has to depend on conventional resources which in result reduce the annual solar fraction. TES helps to reduce dependency over conventional resource by minimizing energy waste. TES is mainly described by the parameters like capacity, power, efficiency, storage period, charge and discharge time, and cost. There are different storage mechanisms by which energy can be stored: sensible, latent, and chemical reactions. In sensible-type storage, energy is stored by increasing the temperature of solid or liquid storage media (e.g., sand-rock minerals, concrete, oils, and liquid sodium). These materials have excellent thermal conductivity and are cheaper, but due to low heat capacity, it increases system size. In latent-type storage, energy is stored/released during phase change; thus, it has higher storage capacity than sensible, but suffers from the issue of low thermal conductivity. As the solid–liquid phase change process of pure or eutectic substances is isothermal in nature, it is beneficial for the application having limitations with working temperature. In chemical-type TES, heat is absorbed/released due to breakdown or formation of chemical bonds. The technology is not much developed and has limited application due to possibility of degradation over time and chemical instability. TES can also be classified as active and passive depending upon the solid or liquid energy storage medium. Active TES is further classified as direct active and indirect active depending on whether the storage fluid and the heat transfer fluid (HTF) are same or some other HTF is required to extract heat from solar field. The discussion in this chapter includes basic heat transfer models, along with experimental studies by different research groups on various TES. Finally, methods and design criteria that can improve the system performance are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barr KP (1982) Buffer thermal energy storage for a solar Brayton engine. Mirror Barr KP (1982) Buffer thermal energy storage for a solar Brayton engine. Mirror
2.
go back to reference Somasundaram S, Brown DR, Kevin Drost M (1997) Diurnal thermal energy storage for cogeneration applications. Cogener Compet Power J 12(2):51–78 Somasundaram S, Brown DR, Kevin Drost M (1997) Diurnal thermal energy storage for cogeneration applications. Cogener Compet Power J 12(2):51–78
3.
go back to reference Givoni B (1977) Underground longterm storage of solar energy—an overview. Sol Energy 19(6):617–623CrossRef Givoni B (1977) Underground longterm storage of solar energy—an overview. Sol Energy 19(6):617–623CrossRef
4.
go back to reference Pardo P et al (2014) A review on high temperature thermochemical heat energy storage. Renew Sustain Energy Rev 32(2014):591–610 Pardo P et al (2014) A review on high temperature thermochemical heat energy storage. Renew Sustain Energy Rev 32(2014):591–610
5.
go back to reference Sukhatme K, Sukhatme SP (1996) Solar energy: principles of thermal collection and storage. Tata McGraw-Hill Education Sukhatme K, Sukhatme SP (1996) Solar energy: principles of thermal collection and storage. Tata McGraw-Hill Education
6.
go back to reference Shelton J (1975) Underground storage of heat in solar heating systems. Sol Energy 17(2):137–143CrossRef Shelton J (1975) Underground storage of heat in solar heating systems. Sol Energy 17(2):137–143CrossRef
8.
go back to reference Caljé RJ (2009) Future use of Aquifer thermal energy storage below the historic centre of Amsterdam. Master Study Hydrology Department of Water-Management, Delft University of Technology, December 16th 2009 (5/7/2017) Caljé RJ (2009) Future use of Aquifer thermal energy storage below the historic centre of Amsterdam. Master Study Hydrology Department of Water-Management, Delft University of Technology, December 16th 2009 (5/7/2017)
9.
go back to reference Paksoy H, Snijders A, Stiles L (2009) State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. In: Proceedings of the EFFSTOCK conference, Stockholm, Sweden Paksoy H, Snijders A, Stiles L (2009) State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. In: Proceedings of the EFFSTOCK conference, Stockholm, Sweden
10.
go back to reference Ercan Ataer O (2006) Storage of thermal energy, in energy storage systems. In: Gogus YA (ed) Encyclopedia of life support systems (EOLSS). Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, UK. http://www.eolss.net Ercan Ataer O (2006) Storage of thermal energy, in energy storage systems. In: Gogus YA (ed) Encyclopedia of life support systems (EOLSS). Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, UK. http://​www.​eolss.​net
11.
go back to reference Ushak S, Fernández AG, Grageda M (2014) Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. In: Advances in thermal energy storage systems: methods and applications, 1st ed. Cabeza, LF, Ed, pp 49–63 Ushak S, Fernández AG, Grageda M (2014) Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. In: Advances in thermal energy storage systems: methods and applications, 1st ed. Cabeza, LF, Ed, pp 49–63
12.
go back to reference Ortega JI, Ignacio Burgaleta J, TÊllez FM (2008) Central receiver system solar power plant using molten salt as heat transfer fluid. J Sol Energy Eng 130(2):024501 Ortega JI, Ignacio Burgaleta J, TÊllez FM (2008) Central receiver system solar power plant using molten salt as heat transfer fluid. J Sol Energy Eng 130(2):024501
13.
go back to reference Jorgenson J, Gilman P, Dobos A (2011) Technical manual for the SAM biomass power generation model. No. NREL/TP-6A20-52688. National Renewable Energy Laboratory (NREL), Golden, CO Jorgenson J, Gilman P, Dobos A (2011) Technical manual for the SAM biomass power generation model. No. NREL/TP-6A20-52688. National Renewable Energy Laboratory (NREL), Golden, CO
14.
go back to reference Solar Millennium (2008) The parabolic trough power plants Andasol 1 to 3. Tech. Solar Millennium AG Solar Millennium (2008) The parabolic trough power plants Andasol 1 to 3. Tech. Solar Millennium AG
16.
go back to reference Tesfay M, Venkatesan M (2013) Simulation of thermocline thermal energy storage system using C. Int J Innov Appl Stud 3(2):354–364 Tesfay M, Venkatesan M (2013) Simulation of thermocline thermal energy storage system using C. Int J Innov Appl Stud 3(2):354–364
17.
go back to reference Chang ZS et al (2015) The design and numerical study of a 2 mwh molten salt thermocline tank. Energy Procedia 69:779–789CrossRef Chang ZS et al (2015) The design and numerical study of a 2 mwh molten salt thermocline tank. Energy Procedia 69:779–789CrossRef
18.
go back to reference Flueckiger SM, Yang Z, Garimella SV (2013) Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf Eng 34(10):787–800CrossRef Flueckiger SM, Yang Z, Garimella SV (2013) Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf Eng 34(10):787–800CrossRef
19.
go back to reference (2010) Solar thermal storage systems: preliminary design study. EPRI report 1019581 (2010) Solar thermal storage systems: preliminary design study. EPRI report 1019581
20.
go back to reference Li P et al (2011) Generalized charts of energy storage effectiveness for thermocline heat storage tank design and calibration. Sol Energy 85(9):2130–2143 Li P et al (2011) Generalized charts of energy storage effectiveness for thermocline heat storage tank design and calibration. Sol Energy 85(9):2130–2143
21.
go back to reference Haller MY et al (2009) Methods to determine stratification efficiency of thermal energy storage processes—review and theoretical comparison. Sol Energy 83(10):1847–1860 Haller MY et al (2009) Methods to determine stratification efficiency of thermal energy storage processes—review and theoretical comparison. Sol Energy 83(10):1847–1860
23.
go back to reference Andersen E, Furbo S, Fan J (2007) Multilayer fabric stratification pipes for solar tanks. Sol Energy 81(10):1219–1226CrossRef Andersen E, Furbo S, Fan J (2007) Multilayer fabric stratification pipes for solar tanks. Sol Energy 81(10):1219–1226CrossRef
24.
go back to reference Zavattoni SA et al (2015) Evaluation of thermal stratification of an air-based thermocline TES with low-cost filler material. Energy Procedia 73:289–296 Zavattoni SA et al (2015) Evaluation of thermal stratification of an air-based thermocline TES with low-cost filler material. Energy Procedia 73:289–296
25.
go back to reference Tian Y, Zhao C-Y (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553CrossRef Tian Y, Zhao C-Y (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553CrossRef
26.
go back to reference Canbazoğlu S et al (2005) Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build 37(3):235–242 Canbazoğlu S et al (2005) Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build 37(3):235–242
27.
go back to reference Morrison DJ, Abdel-Khalik SI (1978) Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Sol Energy 20(1):57–67CrossRef Morrison DJ, Abdel-Khalik SI (1978) Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Sol Energy 20(1):57–67CrossRef
28.
go back to reference Jurinak JJ, Abdel-Khalik SI (1979) On the performance of air-based solar heating systems utilizing phase-change energy storage. Energy 4(4):503–522CrossRef Jurinak JJ, Abdel-Khalik SI (1979) On the performance of air-based solar heating systems utilizing phase-change energy storage. Energy 4(4):503–522CrossRef
29.
go back to reference Enibe SO (2002) Performance of a natural circulation solar air heating system with phase change material energy storage. Renew Energy 27(1):69–86CrossRef Enibe SO (2002) Performance of a natural circulation solar air heating system with phase change material energy storage. Renew Energy 27(1):69–86CrossRef
30.
go back to reference Zhang J (1999) Energy saving technology of refrigeration devices Zhang J (1999) Energy saving technology of refrigeration devices
31.
go back to reference Gu Z, Liu H, Li Y (2004) Thermal energy recovery of air conditioning system—heat recovery system calculation and phase change materials development. Appl Therm Eng 24(17):2511–2526CrossRef Gu Z, Liu H, Li Y (2004) Thermal energy recovery of air conditioning system—heat recovery system calculation and phase change materials development. Appl Therm Eng 24(17):2511–2526CrossRef
32.
go back to reference Buddhi D (1997) Thermal performance of a shell and tube PCM storage heat exchanger for industrial waste heat recovery. In: Proceedings of the ISES 1997 solar world congress, Taejon, Korea Buddhi D (1997) Thermal performance of a shell and tube PCM storage heat exchanger for industrial waste heat recovery. In: Proceedings of the ISES 1997 solar world congress, Taejon, Korea
33.
go back to reference Lovegrove K, Luzzi A, Kreetz H (1999) A solar-driven ammonia-based thermochemical energy storage system. Sol Energy 67(4):309–316CrossRef Lovegrove K, Luzzi A, Kreetz H (1999) A solar-driven ammonia-based thermochemical energy storage system. Sol Energy 67(4):309–316CrossRef
34.
go back to reference Steinfeld A, Sanders S, Palumbo R (1999) Design aspects of solar thermochemical engineering—a case study: two-step water-splitting cycle using the Fe3O4/FeO redox system. Sol Energy 65(1):43–53 Steinfeld A, Sanders S, Palumbo R (1999) Design aspects of solar thermochemical engineering—a case study: two-step water-splitting cycle using the Fe3O4/FeO redox system. Sol Energy 65(1):43–53
Metadata
Title
Solar Thermal Energy Storage
Authors
Aniket D. Monde
Amit Shrivastava
Prodyut R. Chakraborty
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7206-2_8