Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

Solubilization of Fullerenes, Carbon Nanotubes, and Graphene

Author : Alain Pénicaud

Published in: Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Processing of novel carbon forms, i.e. fullerenes, nanotubes and graphene, in solution is described. C60 and higher fullerenes appear to be the only truly soluble forms of pure carbon. Ways to disperse carbon nanotubes and graphene are reviewed. True solutions of carbon nanotubes and graphene can be obtained by reductive dissolution, leading to solution of polyelectrolyte nanocarbons of high concentrations without damaging the nanocarbon. Finally it is shown that these solutions allow to obtain high performing materials such as highly conducting transparent electrodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
IUPAC definition of "graphene" in the IUPAC Gold Book : http://​goldbook.​iupac.​org/​.
 
Literature
1.
go back to reference Delhaes P (2012) Carbon science and technology: from energy to materials. Wiley, Hoboken Delhaes P (2012) Carbon science and technology: from energy to materials. Wiley, Hoboken
2.
go back to reference Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163 Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163
3.
go back to reference Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358 Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358
4.
go back to reference Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single wall carbon nanotube salt. J Am Chem Soc 127:8–9 Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single wall carbon nanotube salt. J Am Chem Soc 127:8–9
6.
go back to reference Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91:557 Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91:557
7.
go back to reference Kuznetsov O et al (2012) Water-soluble nanodiamond. Langmuir 28:5243–5248 Kuznetsov O et al (2012) Water-soluble nanodiamond. Langmuir 28:5243–5248
8.
go back to reference Pénicaud A (1999) Les Cristaux, fenêtres sur l’invisible. Ellipses, Paris Pénicaud A (1999) Les Cristaux, fenêtres sur l’invisible. Ellipses, Paris
9.
go back to reference Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chemie Int Ed 41:1853–1859 Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chemie Int Ed 41:1853–1859
10.
go back to reference Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1120 Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1120
11.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
12.
go back to reference Fogden S, Howard CA, Heenan RK, Skipper NT, Shaffer MSP (2012) Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6:54–62 Fogden S, Howard CA, Heenan RK, Skipper NT, Shaffer MSP (2012) Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6:54–62
13.
go back to reference Hodge SA, Bayazit MK, Tay HH, Shaffer MSP (2013) Giant cationic polyelectrolytes generated via electrochemical oxidtion of single-walled carbon nanotubes. Nat Commun 4:1989 Hodge SA, Bayazit MK, Tay HH, Shaffer MSP (2013) Giant cationic polyelectrolytes generated via electrochemical oxidtion of single-walled carbon nanotubes. Nat Commun 4:1989
14.
go back to reference Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326 Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326
15.
go back to reference Stumpp E et al (1994) IUPAC paper. Pure Appl Chem 66(9):1893–1901 Stumpp E et al (1994) IUPAC paper. Pure Appl Chem 66(9):1893–1901
16.
go back to reference McCleverty JA, Connelly NG (2001) Nomenclature of inorganic chemistry II: recommendations 2000. The Royal Society of Chemistry, Cambridge McCleverty JA, Connelly NG (2001) Nomenclature of inorganic chemistry II: recommendations 2000. The Royal Society of Chemistry, Cambridge
17.
go back to reference Suarez-Martinez I, Grobert N, Ewels CP (2012) Nomenclature of sp2 carbon nanoforms. Carbon N Y 50:741–747 Suarez-Martinez I, Grobert N, Ewels CP (2012) Nomenclature of sp2 carbon nanoforms. Carbon N Y 50:741–747
18.
go back to reference Boyd PDW, Bhyrappa P, Paul P, Stinchcombe J, Bolskar R, Sun Y, Reed CA (1995) The C60 2− fulleride ion. J Am Chem Soc 117:2907–2914 Boyd PDW, Bhyrappa P, Paul P, Stinchcombe J, Bolskar R, Sun Y, Reed CA (1995) The C60 2− fulleride ion. J Am Chem Soc 117:2907–2914
19.
go back to reference Taylor R, Hare JP, Abdul-sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes CG0 and CT0: the third form of carbon. J Chem Soc Chem Commun 1423–1425. doi:10.1039/C39900001423 Taylor R, Hare JP, Abdul-sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes CG0 and CT0: the third form of carbon. J Chem Soc Chem Commun 1423–1425. doi:10.​1039/​C39900001423
20.
go back to reference Azamar-Barrios JA, Muñoz EP, Pénicaud A (1997) Electrochemical generation of minute quantities (<100 μg) of the higher fullerene radicals C76 .-, C78 .- and C84 .- under O2-and-H2O-free conditions and their observation by electron spin resonance. Faraday Trans 93:3119 Azamar-Barrios JA, Muñoz EP, Pénicaud A (1997) Electrochemical generation of minute quantities (<100 μg) of the higher fullerene radicals C76 .-, C78 .- and C84 .- under O2-and-H2O-free conditions and their observation by electron spin resonance. Faraday Trans 93:3119
21.
go back to reference Azamar-Barrios JA, Dennis TJS, Sadhukan S, Shinohara H, Scuseria G, Pénicaud A (2001) Characterization of six isomers of [84]fullerene C84 by electrochemistry, electron spin resonance spectroscopy and molecular energy levels calculations. J Phys Chem A 105(19):4627–4632 Azamar-Barrios JA, Dennis TJS, Sadhukan S, Shinohara H, Scuseria G, Pénicaud A (2001) Characterization of six isomers of [84]fullerene C84 by electrochemistry, electron spin resonance spectroscopy and molecular energy levels calculations. J Phys Chem A 105(19):4627–4632
22.
go back to reference Hare JP, Kroto HW, Taylor R (1991) Preparation and UV/visible spectra of the fullerenes C60 and C70. Chem Phys Lett 177:394 Hare JP, Kroto HW, Taylor R (1991) Preparation and UV/visible spectra of the fullerenes C60 and C70. Chem Phys Lett 177:394
23.
go back to reference Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113(3):1050–1051 Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113(3):1050–1051
24.
go back to reference Xie Q, Pérez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980 Xie Q, Pérez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980
25.
go back to reference Bruno C et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125:15738–15739 Bruno C et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125:15738–15739
26.
go back to reference Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97:3379–3383 Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97:3379–3383
27.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605
28.
go back to reference Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomlc-layer walls. Nature 363:605–607 Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomlc-layer walls. Nature 363:605–607
29.
go back to reference Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758 Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758
30.
go back to reference Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487 Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487
31.
go back to reference Voiry D, Drummond C, Pénicaud A (2011) Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7:7998 Voiry D, Drummond C, Pénicaud A (2011) Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7:7998
32.
go back to reference Liu J et al (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129 Liu J et al (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129
33.
go back to reference Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915 Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915
34.
go back to reference Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194 Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194
35.
go back to reference Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105 Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105
36.
go back to reference Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walledcarbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223 Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walledcarbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223
37.
go back to reference Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the Hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8:6082–6092 Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the Hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8:6082–6092
38.
go back to reference Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695 Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695
39.
go back to reference Liu J et al (1998) Fullerene pipes. Science 280:1253–1256 Liu J et al (1998) Fullerene pipes. Science 280:1253–1256
40.
go back to reference Mkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8:1299–1313 Mkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8:1299–1313
41.
go back to reference Wenseleers W et al (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14:1105–1112 Wenseleers W et al (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14:1105–1112
42.
go back to reference Martel R (2008) Sorting carbon nanotubes for electronics. ACS Nano 2:2195–2199 Martel R (2008) Sorting carbon nanotubes for electronics. ACS Nano 2:2195–2199
43.
go back to reference Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718 Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718
44.
go back to reference Tarascon JM, DiSalvo FJ, Chen CH, Carrol PJ, Walsh M, Rupp L (1985) First example of monodispersed (Mo3Se3) clusters. J Solid State Chem 58:290–300 Tarascon JM, DiSalvo FJ, Chen CH, Carrol PJ, Walsh M, Rupp L (1985) First example of monodispersed (Mo3Se3) clusters. J Solid State Chem 58:290–300
45.
go back to reference Lee RS, Kim HJ, Fischer JE, Thess A (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255–257 Lee RS, Kim HJ, Fischer JE, Thess A (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255–257
46.
go back to reference Pénicaud A, Petit P, Fischer JE (2012) Doped carbon nanotubes. In: Monthioux M (ed) Carbon meta-nanotubes: synthesis, properties and applications, 1st edn. Wiley, Hoboken, pp 41–111 Pénicaud A, Petit P, Fischer JE (2012) Doped carbon nanotubes. In: Monthioux M (ed) Carbon meta-nanotubes: synthesis, properties and applications, 1st edn. Wiley, Hoboken, pp 41–111
47.
go back to reference Pénicaud A, Poulin P, Derré A (2003) Procédé de dissolution de nanotubes de carbone, CNRS, WO 2005/073127; PCT/FR04/03383 Pénicaud A, Poulin P, Derré A (2003) Procédé de dissolution de nanotubes de carbone, CNRS, WO 2005/073127; PCT/FR04/03383
48.
go back to reference Bendiab N, Anglaret E, Bantignies JL, Zahab A, Sauvajol JL, Petit P, Mathis C, Lefrant S (2001) Phys Rev B 64:245424 Bendiab N, Anglaret E, Bantignies JL, Zahab A, Sauvajol JL, Petit P, Mathis C, Lefrant S (2001) Phys Rev B 64:245424
49.
go back to reference Petit P, Mathis C, Journet C, Bernier P (1999) Tuning and monitoring the electronic structure of carbon nanotubes. Chem Phys Lett 305:370–374 Petit P, Mathis C, Journet C, Bernier P (1999) Tuning and monitoring the electronic structure of carbon nanotubes. Chem Phys Lett 305:370–374
50.
go back to reference Vigolo B et al (2009) Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J Phys Chem C 113:7624–7628 Vigolo B et al (2009) Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J Phys Chem C 113:7624–7628
51.
go back to reference Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110(32):15708–15718 Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110(32):15708–15718
52.
go back to reference Jiang C, Saha A, Xiang C, Young C, Tour JM, Pasquali M et al (2013) Increased solubility, liquid crystalline phase and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7:4503–4510 Jiang C, Saha A, Xiang C, Young C, Tour JM, Pasquali M et al (2013) Increased solubility, liquid crystalline phase and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7:4503–4510
53.
go back to reference Paolucci D, Melle Franco M, Iurlo M, Marcaccio M, Prato M, Zerbetto F, Pénicaud A, Paolucci F (2008) Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J Am Chem Soc 130:7393–7399 Paolucci D, Melle Franco M, Iurlo M, Marcaccio M, Prato M, Zerbetto F, Pénicaud A, Paolucci F (2008) Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J Am Chem Soc 130:7393–7399
54.
go back to reference Voiry D, Vallés C, Roubeau O, Pénicaud A (2011) Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon N Y 49:170–175 Voiry D, Vallés C, Roubeau O, Pénicaud A (2011) Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon N Y 49:170–175
55.
go back to reference Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RE, Billups WE (2004) Nano Lett 4:1257–1260 Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RE, Billups WE (2004) Nano Lett 4:1257–1260
56.
go back to reference Chattopadhyay J et al (2005) Carbon nanotube salts: arylation of single-wall carbon nanotubes. Org Lett 7:4067–4069 Chattopadhyay J et al (2005) Carbon nanotube salts: arylation of single-wall carbon nanotubes. Org Lett 7:4067–4069
57.
go back to reference Graupner R et al (2006) Nucleophilic-alkylation-reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128:6683–6689 Graupner R et al (2006) Nucleophilic-alkylation-reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128:6683–6689
58.
go back to reference Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148 Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148
59.
go back to reference Guan J, Martinez-Rubi Y, Dénommée S, Ruth D, Kingston CT, Daroszewska M et al (2009) About the solubility of reduced SWCNT in DMSO. Nanotechnology 20(24):245701 Guan J, Martinez-Rubi Y, Dénommée S, Ruth D, Kingston CT, Daroszewska M et al (2009) About the solubility of reduced SWCNT in DMSO. Nanotechnology 20(24):245701
60.
go back to reference Voiry D, Roubeau O, Pénicaud A (2010) Stoichiometric control of single walled carbon nanotubes functionalization. J Mater Chem 20:4385 Voiry D, Roubeau O, Pénicaud A (2010) Stoichiometric control of single walled carbon nanotubes functionalization. J Mater Chem 20:4385
61.
go back to reference Chen Z, Wu Z, Sippel J, Rinzler AG (2004) Metallic/semiconducting nanotube separation and ultra-thin, transparent nanotube films. In: Electronic properties and synthesis of nanostructures B. Series of AIP conference proceedings, New York, vol 723, pp 69–74 Chen Z, Wu Z, Sippel J, Rinzler AG (2004) Metallic/semiconducting nanotube separation and ultra-thin, transparent nanotube films. In: Electronic properties and synthesis of nanostructures B. Series of AIP conference proceedings, New York, vol 723, pp 69–74
62.
go back to reference Krupke R, Hennrich F, von Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347 Krupke R, Hennrich F, von Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347
63.
go back to reference Hodge SA, Fogden S, Howard CA, Skipper NT, Shaffer MSP (2013) Electrochemical processing of discrete single-walled carbon nanotube anions. ACS Nano 7:1769–1778 Hodge SA, Fogden S, Howard CA, Skipper NT, Shaffer MSP (2013) Electrochemical processing of discrete single-walled carbon nanotube anions. ACS Nano 7:1769–1778
64.
go back to reference O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596 O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596
65.
go back to reference Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273 Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273
66.
go back to reference Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534 Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534
67.
go back to reference Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747 Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747
68.
go back to reference Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473 Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473
69.
go back to reference Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533 Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533
70.
go back to reference Paiva MC et al (2010) Unzipping of functionalized multiwall carbon nanotubes induced by STM. Nano Lett 10:1764–1768 Paiva MC et al (2010) Unzipping of functionalized multiwall carbon nanotubes induced by STM. Nano Lett 10:1764–1768
71.
go back to reference Janowska I et al (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A 371:22–30 Janowska I et al (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A 371:22–30
72.
go back to reference Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880
73.
go back to reference Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876 Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876
74.
go back to reference Campos-Delgado J et al (2008) Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778 Campos-Delgado J et al (2008) Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778
75.
go back to reference Ning G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun (Camb) 47(5976–8) Ning G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun (Camb) 47(5976–8)
76.
go back to reference Sun Z et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552 Sun Z et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552
77.
go back to reference Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924 Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924
78.
go back to reference Dreyer DR, Park S, Bielawski W, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240 Dreyer DR, Park S, Bielawski W, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240
79.
go back to reference Krishnamoorthy K, Veerapandian M, Yun K, Kim S (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49 Krishnamoorthy K, Veerapandian M, Yun K, Kim S (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49
80.
go back to reference Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568 Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568
81.
go back to reference Lotya M et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620 Lotya M et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620
82.
go back to reference Guardia L et al (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon N Y 49:1653–1662 Guardia L et al (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon N Y 49:1653–1662
83.
go back to reference Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259 Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259
84.
go back to reference Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871 Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871
85.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
86.
go back to reference Berger C et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B 108:19912–19916 Berger C et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B 108:19912–19916
87.
go back to reference Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578 Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578
88.
go back to reference Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411 Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411
89.
go back to reference Vallés C et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804 Vallés C et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804
90.
go back to reference Pénicaud A, Drummond C (2013) Deconstructing graphite: graphenide solutions. Acc Chem Res 46:129–137 Pénicaud A, Drummond C (2013) Deconstructing graphite: graphenide solutions. Acc Chem Res 46:129–137
91.
go back to reference Milner EM et al (2012) Structure and morphology of charged graphene platelets in solution by small angle neutron scattering. J Am Chem Soc 134:8302–8305 Milner EM et al (2012) Structure and morphology of charged graphene platelets in solution by small angle neutron scattering. J Am Chem Soc 134:8302–8305
92.
go back to reference Englert JM et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286 Englert JM et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286
93.
go back to reference Kelly KF, Billups WE (2013) Synthesis of soluble graphite and graphene. Acc Chem Res 46:4–13 Kelly KF, Billups WE (2013) Synthesis of soluble graphite and graphene. Acc Chem Res 46:4–13
94.
go back to reference Catheline A et al (2011) Graphene solutions. Chem Commun (Camb) 47(5470–2) Catheline A et al (2011) Graphene solutions. Chem Commun (Camb) 47(5470–2)
95.
go back to reference Catheline A et al (2012) Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 8:7882 Catheline A et al (2012) Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 8:7882
96.
go back to reference Iijima S et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170 Iijima S et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170
97.
go back to reference Endo M et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267 Endo M et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267
98.
go back to reference Saito K, Ohtani M, Fukuzumi S (2006) Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size. J Am Chem Soc 128:14216–14217 Saito K, Ohtani M, Fukuzumi S (2006) Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size. J Am Chem Soc 128:14216–14217
99.
go back to reference Voiry D, Pagona G, Tagmatarchis N, Pénicaud A (2007) Solutions of carbon nanohorns, method for making same, and uses thereof, WO 2011/154894, demande de brevet européen du 7 juin 2010, N° EP 10165108.1 Voiry D, Pagona G, Tagmatarchis N, Pénicaud A (2007) Solutions of carbon nanohorns, method for making same, and uses thereof, WO 2011/154894, demande de brevet européen du 7 juin 2010, N° EP 10165108.1
100.
go back to reference Voiry D, Pagona G, del Canto E, Ortolani L, Morandi V, Noé L, Melle Franco M, Monthioux M, Tagmatarchis N, Penicaud A Individualized single-wall carbon nanohorns: a new form of metal free carbon nanomaterial, in preparation Voiry D, Pagona G, del Canto E, Ortolani L, Morandi V, Noé L, Melle Franco M, Monthioux M, Tagmatarchis N, Penicaud A Individualized single-wall carbon nanohorns: a new form of metal free carbon nanomaterial, in preparation
101.
go back to reference Davis VA et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834 Davis VA et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834
102.
go back to reference Yotprayoonsak P, Hannula K, Lahtinen T, Ahlskog M, Johansson A (2011) Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time. Carbon N Y 49:5283–5291 Yotprayoonsak P, Hannula K, Lahtinen T, Ahlskog M, Johansson A (2011) Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time. Carbon N Y 49:5283–5291
103.
go back to reference Lorençon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Appl Mater Interfaces 1:2104–2106 Lorençon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Appl Mater Interfaces 1:2104–2106
104.
go back to reference Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513 Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513
105.
go back to reference Pénicaud A, Catheline A, Gaillard P (2011) Procédé de préparation de films transparents conducteurs à base de nanotubes de carbone, FR2011/051352 Pénicaud A, Catheline A, Gaillard P (2011) Procédé de préparation de films transparents conducteurs à base de nanotubes de carbone, FR2011/051352
106.
go back to reference Monthioux M, Kuznetsov V (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623 Monthioux M, Kuznetsov V (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623
107.
go back to reference Zakri C, Penicaud A, Poulin P (2013) Les nanotubes: des fibres d’avenir. Dossiers Pour la Sci 79:86 Zakri C, Penicaud A, Poulin P (2013) Les nanotubes: des fibres d’avenir. Dossiers Pour la Sci 79:86
Metadata
Title
Solubilization of Fullerenes, Carbon Nanotubes, and Graphene
Author
Alain Pénicaud
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2013_520

Premium Partners