Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

Solubilization of Fullerenes, Carbon Nanotubes, and Graphene

verfasst von : Alain Pénicaud

Erschienen in: Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Processing of novel carbon forms, i.e. fullerenes, nanotubes and graphene, in solution is described. C60 and higher fullerenes appear to be the only truly soluble forms of pure carbon. Ways to disperse carbon nanotubes and graphene are reviewed. True solutions of carbon nanotubes and graphene can be obtained by reductive dissolution, leading to solution of polyelectrolyte nanocarbons of high concentrations without damaging the nanocarbon. Finally it is shown that these solutions allow to obtain high performing materials such as highly conducting transparent electrodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
IUPAC definition of "graphene" in the IUPAC Gold Book : http://​goldbook.​iupac.​org/​.
 
Literatur
1.
Zurück zum Zitat Delhaes P (2012) Carbon science and technology: from energy to materials. Wiley, Hoboken Delhaes P (2012) Carbon science and technology: from energy to materials. Wiley, Hoboken
2.
Zurück zum Zitat Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163 Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163
3.
Zurück zum Zitat Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358 Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358
4.
Zurück zum Zitat Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single wall carbon nanotube salt. J Am Chem Soc 127:8–9 Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single wall carbon nanotube salt. J Am Chem Soc 127:8–9
6.
Zurück zum Zitat Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91:557 Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91:557
7.
Zurück zum Zitat Kuznetsov O et al (2012) Water-soluble nanodiamond. Langmuir 28:5243–5248 Kuznetsov O et al (2012) Water-soluble nanodiamond. Langmuir 28:5243–5248
8.
Zurück zum Zitat Pénicaud A (1999) Les Cristaux, fenêtres sur l’invisible. Ellipses, Paris Pénicaud A (1999) Les Cristaux, fenêtres sur l’invisible. Ellipses, Paris
9.
Zurück zum Zitat Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chemie Int Ed 41:1853–1859 Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chemie Int Ed 41:1853–1859
10.
Zurück zum Zitat Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1120 Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1120
11.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
12.
Zurück zum Zitat Fogden S, Howard CA, Heenan RK, Skipper NT, Shaffer MSP (2012) Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6:54–62 Fogden S, Howard CA, Heenan RK, Skipper NT, Shaffer MSP (2012) Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6:54–62
13.
Zurück zum Zitat Hodge SA, Bayazit MK, Tay HH, Shaffer MSP (2013) Giant cationic polyelectrolytes generated via electrochemical oxidtion of single-walled carbon nanotubes. Nat Commun 4:1989 Hodge SA, Bayazit MK, Tay HH, Shaffer MSP (2013) Giant cationic polyelectrolytes generated via electrochemical oxidtion of single-walled carbon nanotubes. Nat Commun 4:1989
14.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326 Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326
15.
Zurück zum Zitat Stumpp E et al (1994) IUPAC paper. Pure Appl Chem 66(9):1893–1901 Stumpp E et al (1994) IUPAC paper. Pure Appl Chem 66(9):1893–1901
16.
Zurück zum Zitat McCleverty JA, Connelly NG (2001) Nomenclature of inorganic chemistry II: recommendations 2000. The Royal Society of Chemistry, Cambridge McCleverty JA, Connelly NG (2001) Nomenclature of inorganic chemistry II: recommendations 2000. The Royal Society of Chemistry, Cambridge
17.
Zurück zum Zitat Suarez-Martinez I, Grobert N, Ewels CP (2012) Nomenclature of sp2 carbon nanoforms. Carbon N Y 50:741–747 Suarez-Martinez I, Grobert N, Ewels CP (2012) Nomenclature of sp2 carbon nanoforms. Carbon N Y 50:741–747
18.
Zurück zum Zitat Boyd PDW, Bhyrappa P, Paul P, Stinchcombe J, Bolskar R, Sun Y, Reed CA (1995) The C60 2− fulleride ion. J Am Chem Soc 117:2907–2914 Boyd PDW, Bhyrappa P, Paul P, Stinchcombe J, Bolskar R, Sun Y, Reed CA (1995) The C60 2− fulleride ion. J Am Chem Soc 117:2907–2914
19.
Zurück zum Zitat Taylor R, Hare JP, Abdul-sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes CG0 and CT0: the third form of carbon. J Chem Soc Chem Commun 1423–1425. doi:10.1039/C39900001423 Taylor R, Hare JP, Abdul-sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes CG0 and CT0: the third form of carbon. J Chem Soc Chem Commun 1423–1425. doi:10.​1039/​C39900001423
20.
Zurück zum Zitat Azamar-Barrios JA, Muñoz EP, Pénicaud A (1997) Electrochemical generation of minute quantities (<100 μg) of the higher fullerene radicals C76 .-, C78 .- and C84 .- under O2-and-H2O-free conditions and their observation by electron spin resonance. Faraday Trans 93:3119 Azamar-Barrios JA, Muñoz EP, Pénicaud A (1997) Electrochemical generation of minute quantities (<100 μg) of the higher fullerene radicals C76 .-, C78 .- and C84 .- under O2-and-H2O-free conditions and their observation by electron spin resonance. Faraday Trans 93:3119
21.
Zurück zum Zitat Azamar-Barrios JA, Dennis TJS, Sadhukan S, Shinohara H, Scuseria G, Pénicaud A (2001) Characterization of six isomers of [84]fullerene C84 by electrochemistry, electron spin resonance spectroscopy and molecular energy levels calculations. J Phys Chem A 105(19):4627–4632 Azamar-Barrios JA, Dennis TJS, Sadhukan S, Shinohara H, Scuseria G, Pénicaud A (2001) Characterization of six isomers of [84]fullerene C84 by electrochemistry, electron spin resonance spectroscopy and molecular energy levels calculations. J Phys Chem A 105(19):4627–4632
22.
Zurück zum Zitat Hare JP, Kroto HW, Taylor R (1991) Preparation and UV/visible spectra of the fullerenes C60 and C70. Chem Phys Lett 177:394 Hare JP, Kroto HW, Taylor R (1991) Preparation and UV/visible spectra of the fullerenes C60 and C70. Chem Phys Lett 177:394
23.
Zurück zum Zitat Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113(3):1050–1051 Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113(3):1050–1051
24.
Zurück zum Zitat Xie Q, Pérez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980 Xie Q, Pérez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980
25.
Zurück zum Zitat Bruno C et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125:15738–15739 Bruno C et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125:15738–15739
26.
Zurück zum Zitat Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97:3379–3383 Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97:3379–3383
27.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605
28.
Zurück zum Zitat Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomlc-layer walls. Nature 363:605–607 Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomlc-layer walls. Nature 363:605–607
29.
Zurück zum Zitat Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758 Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758
30.
Zurück zum Zitat Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487 Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487
31.
Zurück zum Zitat Voiry D, Drummond C, Pénicaud A (2011) Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7:7998 Voiry D, Drummond C, Pénicaud A (2011) Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7:7998
32.
Zurück zum Zitat Liu J et al (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129 Liu J et al (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129
33.
Zurück zum Zitat Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915 Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915
34.
Zurück zum Zitat Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194 Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194
35.
Zurück zum Zitat Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105 Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105
36.
Zurück zum Zitat Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walledcarbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223 Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walledcarbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223
37.
Zurück zum Zitat Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the Hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8:6082–6092 Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the Hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8:6082–6092
38.
Zurück zum Zitat Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695 Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695
39.
Zurück zum Zitat Liu J et al (1998) Fullerene pipes. Science 280:1253–1256 Liu J et al (1998) Fullerene pipes. Science 280:1253–1256
40.
Zurück zum Zitat Mkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8:1299–1313 Mkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8:1299–1313
41.
Zurück zum Zitat Wenseleers W et al (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14:1105–1112 Wenseleers W et al (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14:1105–1112
42.
Zurück zum Zitat Martel R (2008) Sorting carbon nanotubes for electronics. ACS Nano 2:2195–2199 Martel R (2008) Sorting carbon nanotubes for electronics. ACS Nano 2:2195–2199
43.
Zurück zum Zitat Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718 Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718
44.
Zurück zum Zitat Tarascon JM, DiSalvo FJ, Chen CH, Carrol PJ, Walsh M, Rupp L (1985) First example of monodispersed (Mo3Se3) clusters. J Solid State Chem 58:290–300 Tarascon JM, DiSalvo FJ, Chen CH, Carrol PJ, Walsh M, Rupp L (1985) First example of monodispersed (Mo3Se3) clusters. J Solid State Chem 58:290–300
45.
Zurück zum Zitat Lee RS, Kim HJ, Fischer JE, Thess A (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255–257 Lee RS, Kim HJ, Fischer JE, Thess A (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255–257
46.
Zurück zum Zitat Pénicaud A, Petit P, Fischer JE (2012) Doped carbon nanotubes. In: Monthioux M (ed) Carbon meta-nanotubes: synthesis, properties and applications, 1st edn. Wiley, Hoboken, pp 41–111 Pénicaud A, Petit P, Fischer JE (2012) Doped carbon nanotubes. In: Monthioux M (ed) Carbon meta-nanotubes: synthesis, properties and applications, 1st edn. Wiley, Hoboken, pp 41–111
47.
Zurück zum Zitat Pénicaud A, Poulin P, Derré A (2003) Procédé de dissolution de nanotubes de carbone, CNRS, WO 2005/073127; PCT/FR04/03383 Pénicaud A, Poulin P, Derré A (2003) Procédé de dissolution de nanotubes de carbone, CNRS, WO 2005/073127; PCT/FR04/03383
48.
Zurück zum Zitat Bendiab N, Anglaret E, Bantignies JL, Zahab A, Sauvajol JL, Petit P, Mathis C, Lefrant S (2001) Phys Rev B 64:245424 Bendiab N, Anglaret E, Bantignies JL, Zahab A, Sauvajol JL, Petit P, Mathis C, Lefrant S (2001) Phys Rev B 64:245424
49.
Zurück zum Zitat Petit P, Mathis C, Journet C, Bernier P (1999) Tuning and monitoring the electronic structure of carbon nanotubes. Chem Phys Lett 305:370–374 Petit P, Mathis C, Journet C, Bernier P (1999) Tuning and monitoring the electronic structure of carbon nanotubes. Chem Phys Lett 305:370–374
50.
Zurück zum Zitat Vigolo B et al (2009) Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J Phys Chem C 113:7624–7628 Vigolo B et al (2009) Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J Phys Chem C 113:7624–7628
51.
Zurück zum Zitat Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110(32):15708–15718 Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110(32):15708–15718
52.
Zurück zum Zitat Jiang C, Saha A, Xiang C, Young C, Tour JM, Pasquali M et al (2013) Increased solubility, liquid crystalline phase and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7:4503–4510 Jiang C, Saha A, Xiang C, Young C, Tour JM, Pasquali M et al (2013) Increased solubility, liquid crystalline phase and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7:4503–4510
53.
Zurück zum Zitat Paolucci D, Melle Franco M, Iurlo M, Marcaccio M, Prato M, Zerbetto F, Pénicaud A, Paolucci F (2008) Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J Am Chem Soc 130:7393–7399 Paolucci D, Melle Franco M, Iurlo M, Marcaccio M, Prato M, Zerbetto F, Pénicaud A, Paolucci F (2008) Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J Am Chem Soc 130:7393–7399
54.
Zurück zum Zitat Voiry D, Vallés C, Roubeau O, Pénicaud A (2011) Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon N Y 49:170–175 Voiry D, Vallés C, Roubeau O, Pénicaud A (2011) Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon N Y 49:170–175
55.
Zurück zum Zitat Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RE, Billups WE (2004) Nano Lett 4:1257–1260 Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RE, Billups WE (2004) Nano Lett 4:1257–1260
56.
Zurück zum Zitat Chattopadhyay J et al (2005) Carbon nanotube salts: arylation of single-wall carbon nanotubes. Org Lett 7:4067–4069 Chattopadhyay J et al (2005) Carbon nanotube salts: arylation of single-wall carbon nanotubes. Org Lett 7:4067–4069
57.
Zurück zum Zitat Graupner R et al (2006) Nucleophilic-alkylation-reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128:6683–6689 Graupner R et al (2006) Nucleophilic-alkylation-reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128:6683–6689
58.
Zurück zum Zitat Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148 Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148
59.
Zurück zum Zitat Guan J, Martinez-Rubi Y, Dénommée S, Ruth D, Kingston CT, Daroszewska M et al (2009) About the solubility of reduced SWCNT in DMSO. Nanotechnology 20(24):245701 Guan J, Martinez-Rubi Y, Dénommée S, Ruth D, Kingston CT, Daroszewska M et al (2009) About the solubility of reduced SWCNT in DMSO. Nanotechnology 20(24):245701
60.
Zurück zum Zitat Voiry D, Roubeau O, Pénicaud A (2010) Stoichiometric control of single walled carbon nanotubes functionalization. J Mater Chem 20:4385 Voiry D, Roubeau O, Pénicaud A (2010) Stoichiometric control of single walled carbon nanotubes functionalization. J Mater Chem 20:4385
61.
Zurück zum Zitat Chen Z, Wu Z, Sippel J, Rinzler AG (2004) Metallic/semiconducting nanotube separation and ultra-thin, transparent nanotube films. In: Electronic properties and synthesis of nanostructures B. Series of AIP conference proceedings, New York, vol 723, pp 69–74 Chen Z, Wu Z, Sippel J, Rinzler AG (2004) Metallic/semiconducting nanotube separation and ultra-thin, transparent nanotube films. In: Electronic properties and synthesis of nanostructures B. Series of AIP conference proceedings, New York, vol 723, pp 69–74
62.
Zurück zum Zitat Krupke R, Hennrich F, von Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347 Krupke R, Hennrich F, von Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347
63.
Zurück zum Zitat Hodge SA, Fogden S, Howard CA, Skipper NT, Shaffer MSP (2013) Electrochemical processing of discrete single-walled carbon nanotube anions. ACS Nano 7:1769–1778 Hodge SA, Fogden S, Howard CA, Skipper NT, Shaffer MSP (2013) Electrochemical processing of discrete single-walled carbon nanotube anions. ACS Nano 7:1769–1778
64.
Zurück zum Zitat O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596 O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596
65.
Zurück zum Zitat Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273 Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273
66.
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534 Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534
67.
Zurück zum Zitat Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747 Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747
68.
Zurück zum Zitat Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473 Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473
69.
Zurück zum Zitat Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533 Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533
70.
Zurück zum Zitat Paiva MC et al (2010) Unzipping of functionalized multiwall carbon nanotubes induced by STM. Nano Lett 10:1764–1768 Paiva MC et al (2010) Unzipping of functionalized multiwall carbon nanotubes induced by STM. Nano Lett 10:1764–1768
71.
Zurück zum Zitat Janowska I et al (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A 371:22–30 Janowska I et al (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A 371:22–30
72.
Zurück zum Zitat Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880
73.
Zurück zum Zitat Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876 Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876
74.
Zurück zum Zitat Campos-Delgado J et al (2008) Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778 Campos-Delgado J et al (2008) Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778
75.
Zurück zum Zitat Ning G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun (Camb) 47(5976–8) Ning G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun (Camb) 47(5976–8)
76.
Zurück zum Zitat Sun Z et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552 Sun Z et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552
77.
Zurück zum Zitat Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924 Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924
78.
Zurück zum Zitat Dreyer DR, Park S, Bielawski W, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240 Dreyer DR, Park S, Bielawski W, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240
79.
Zurück zum Zitat Krishnamoorthy K, Veerapandian M, Yun K, Kim S (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49 Krishnamoorthy K, Veerapandian M, Yun K, Kim S (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49
80.
Zurück zum Zitat Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568 Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568
81.
Zurück zum Zitat Lotya M et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620 Lotya M et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620
82.
Zurück zum Zitat Guardia L et al (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon N Y 49:1653–1662 Guardia L et al (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon N Y 49:1653–1662
83.
Zurück zum Zitat Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259 Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259
84.
Zurück zum Zitat Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871 Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871
85.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
86.
Zurück zum Zitat Berger C et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B 108:19912–19916 Berger C et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B 108:19912–19916
87.
Zurück zum Zitat Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578 Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578
88.
Zurück zum Zitat Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411 Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411
89.
Zurück zum Zitat Vallés C et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804 Vallés C et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804
90.
Zurück zum Zitat Pénicaud A, Drummond C (2013) Deconstructing graphite: graphenide solutions. Acc Chem Res 46:129–137 Pénicaud A, Drummond C (2013) Deconstructing graphite: graphenide solutions. Acc Chem Res 46:129–137
91.
Zurück zum Zitat Milner EM et al (2012) Structure and morphology of charged graphene platelets in solution by small angle neutron scattering. J Am Chem Soc 134:8302–8305 Milner EM et al (2012) Structure and morphology of charged graphene platelets in solution by small angle neutron scattering. J Am Chem Soc 134:8302–8305
92.
Zurück zum Zitat Englert JM et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286 Englert JM et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286
93.
Zurück zum Zitat Kelly KF, Billups WE (2013) Synthesis of soluble graphite and graphene. Acc Chem Res 46:4–13 Kelly KF, Billups WE (2013) Synthesis of soluble graphite and graphene. Acc Chem Res 46:4–13
94.
Zurück zum Zitat Catheline A et al (2011) Graphene solutions. Chem Commun (Camb) 47(5470–2) Catheline A et al (2011) Graphene solutions. Chem Commun (Camb) 47(5470–2)
95.
Zurück zum Zitat Catheline A et al (2012) Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 8:7882 Catheline A et al (2012) Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 8:7882
96.
Zurück zum Zitat Iijima S et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170 Iijima S et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170
97.
Zurück zum Zitat Endo M et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267 Endo M et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267
98.
Zurück zum Zitat Saito K, Ohtani M, Fukuzumi S (2006) Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size. J Am Chem Soc 128:14216–14217 Saito K, Ohtani M, Fukuzumi S (2006) Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size. J Am Chem Soc 128:14216–14217
99.
Zurück zum Zitat Voiry D, Pagona G, Tagmatarchis N, Pénicaud A (2007) Solutions of carbon nanohorns, method for making same, and uses thereof, WO 2011/154894, demande de brevet européen du 7 juin 2010, N° EP 10165108.1 Voiry D, Pagona G, Tagmatarchis N, Pénicaud A (2007) Solutions of carbon nanohorns, method for making same, and uses thereof, WO 2011/154894, demande de brevet européen du 7 juin 2010, N° EP 10165108.1
100.
Zurück zum Zitat Voiry D, Pagona G, del Canto E, Ortolani L, Morandi V, Noé L, Melle Franco M, Monthioux M, Tagmatarchis N, Penicaud A Individualized single-wall carbon nanohorns: a new form of metal free carbon nanomaterial, in preparation Voiry D, Pagona G, del Canto E, Ortolani L, Morandi V, Noé L, Melle Franco M, Monthioux M, Tagmatarchis N, Penicaud A Individualized single-wall carbon nanohorns: a new form of metal free carbon nanomaterial, in preparation
101.
Zurück zum Zitat Davis VA et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834 Davis VA et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834
102.
Zurück zum Zitat Yotprayoonsak P, Hannula K, Lahtinen T, Ahlskog M, Johansson A (2011) Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time. Carbon N Y 49:5283–5291 Yotprayoonsak P, Hannula K, Lahtinen T, Ahlskog M, Johansson A (2011) Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time. Carbon N Y 49:5283–5291
103.
Zurück zum Zitat Lorençon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Appl Mater Interfaces 1:2104–2106 Lorençon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Appl Mater Interfaces 1:2104–2106
104.
Zurück zum Zitat Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513 Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513
105.
Zurück zum Zitat Pénicaud A, Catheline A, Gaillard P (2011) Procédé de préparation de films transparents conducteurs à base de nanotubes de carbone, FR2011/051352 Pénicaud A, Catheline A, Gaillard P (2011) Procédé de préparation de films transparents conducteurs à base de nanotubes de carbone, FR2011/051352
106.
Zurück zum Zitat Monthioux M, Kuznetsov V (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623 Monthioux M, Kuznetsov V (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623
107.
Zurück zum Zitat Zakri C, Penicaud A, Poulin P (2013) Les nanotubes: des fibres d’avenir. Dossiers Pour la Sci 79:86 Zakri C, Penicaud A, Poulin P (2013) Les nanotubes: des fibres d’avenir. Dossiers Pour la Sci 79:86
Metadaten
Titel
Solubilization of Fullerenes, Carbon Nanotubes, and Graphene
verfasst von
Alain Pénicaud
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2013_520

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.