Skip to main content
Top
Published in: International Journal of Computer Vision 1/2021

17-08-2020

Solving Rolling Shutter 3D Vision Problems using Analogies with Non-rigidity

Authors: Yizhen Lao, Omar Ait-Aider, Adrien Bartoli

Published in: International Journal of Computer Vision | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose an original approach to absolute pose and structure-from-motion (SfM) which handles rolling shutter (RS) effects. Unlike most existing methods which either augment global shutter projection with velocity parameters or impose continuous time and motion through pose interpolation, we use local differential constraints. These are established by drawing analogies with non-rigid 3D vision techniques, namely shape-from-template and non-rigid SfM (NRSfM). The proposed idea is to interpret the images of a rigid surface acquired by a moving RS camera as those of a virtually deformed surface taken by a GS camera. These virtually deformed surfaces are first recovered by relaxing the RS constraint using SfT or NRSfM. Then we upgrade the virtually deformed surface to the actual rigid structure and compute the camera pose and ego-motion by reintroducing the RS constraint. This uses a new 3D-3D registration procedure that minimizes a cost function based on the Euclidean 3D point distance. This is more stable and physically meaningful than the reprojection error or the algebraic distance used in previous work. Experimental results obtained with synthetic and real data show that the proposed methods outperform existing ones in terms of accuracy and stability, even in the known critical configurations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agudo, A., & Moreno-Noguer, F. (2015). Simultaneous pose and non-rigid shape with particle dynamics. In CVPR. Agudo, A., & Moreno-Noguer, F. (2015). Simultaneous pose and non-rigid shape with particle dynamics. In CVPR.
go back to reference Agudo, A., Moreno-Noguer, F., Calvo, B., & Montiel, J. M. M. (2016). Sequential non-rigid structure from motion using physical priors. PAMI, 38(5), 979–994.CrossRef Agudo, A., Moreno-Noguer, F., Calvo, B., & Montiel, J. M. M. (2016). Sequential non-rigid structure from motion using physical priors. PAMI, 38(5), 979–994.CrossRef
go back to reference Ait-Aider, O., Andreff, N., Lavest, J. M., & Martinet, P. (2006). Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In ECCV. Ait-Aider, O., Andreff, N., Lavest, J. M., & Martinet, P. (2006). Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In ECCV.
go back to reference Ait-Aider, O., Bartoli, A., & Andreff, N. (2007). Kinematics from lines in a single rolling shutter image. In CVPR. Ait-Aider, O., Bartoli, A., & Andreff, N. (2007). Kinematics from lines in a single rolling shutter image. In CVPR.
go back to reference Ait-Aider, O., & Berry, F. (2009). Structure and kinematics triangulation with a rolling shutter stereo rig. In ICCV. Ait-Aider, O., & Berry, F. (2009). Structure and kinematics triangulation with a rolling shutter stereo rig. In ICCV.
go back to reference Akhter, I., Sheikh, Y., Khan, S., & Kanade, T. (2009). Nonrigid structure from motion in trajectory space. In NIPS. Akhter, I., Sheikh, Y., Khan, S., & Kanade, T. (2009). Nonrigid structure from motion in trajectory space. In NIPS.
go back to reference Albl, C., Kukelova, Z., Larsson, V., & Pajdla, T. (2019). Rolling shutter camera absolute pose. PAMI, 42(6), 1439–1452.CrossRef Albl, C., Kukelova, Z., Larsson, V., & Pajdla, T. (2019). Rolling shutter camera absolute pose. PAMI, 42(6), 1439–1452.CrossRef
go back to reference Albl, C., Kukelova, Z., & Pajdla, T. (2015). R6p-rolling shutter absolute camera pose. In CVPR. Albl, C., Kukelova, Z., & Pajdla, T. (2015). R6p-rolling shutter absolute camera pose. In CVPR.
go back to reference Albl, C., Kukelova, Z., & Pajdla, T. (2016a). Rolling shutter absolute pose problem with known vertical direction. In CVPR. Albl, C., Kukelova, Z., & Pajdla, T. (2016a). Rolling shutter absolute pose problem with known vertical direction. In CVPR.
go back to reference Albl, C., Sugimoto, A., & Pajdla, T. (2016b). Degeneracies in rolling shutter SfM. In ECCV. Albl, C., Sugimoto, A., & Pajdla, T. (2016b). Degeneracies in rolling shutter SfM. In ECCV.
go back to reference Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., & Pizarro, D. (2015). Shape-from-template. PAMI, 37(10), 2099–2118.CrossRef Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., & Pizarro, D. (2015). Shape-from-template. PAMI, 37(10), 2099–2118.CrossRef
go back to reference Chhatkuli, A., Pizarro, D., Bartoli, A., & Collins, T. (2017). A stable analytical framework for isometric shape-from-template by surface integration. PAMI, 39(5), 833–850.CrossRef Chhatkuli, A., Pizarro, D., Bartoli, A., & Collins, T. (2017). A stable analytical framework for isometric shape-from-template by surface integration. PAMI, 39(5), 833–850.CrossRef
go back to reference Collins, T., & Bartoli, A. (2015). [POSTER] Realtime shape-from-template: System and applications. In ISMAR. Collins, T., & Bartoli, A. (2015). [POSTER] Realtime shape-from-template: System and applications. In ISMAR.
go back to reference Dai, Y., Li, H., & Kneip, L. (2016). Rolling shutter camera relative pose: Generalized epipolar geometry. In CVPR. Dai, Y., Li, H., & Kneip, L. (2016). Rolling shutter camera relative pose: Generalized epipolar geometry. In CVPR.
go back to reference Dierckx, P. (1993). Curve and surface fitting with splines. New York: Oxford University Press.MATH Dierckx, P. (1993). Curve and surface fitting with splines. New York: Oxford University Press.MATH
go back to reference Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis: with applications in R (Vol. 995). John Wiley & Sons. Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis: with applications in R (Vol. 995). John Wiley & Sons.
go back to reference Duchamp, G., Ait-Aider, O., Royer, E., & Lavest, J. M. (2015). A rolling shutter compliant method for localisation and reconstruction. In VISAPP. Duchamp, G., Ait-Aider, O., Royer, E., & Lavest, J. M. (2015). A rolling shutter compliant method for localisation and reconstruction. In VISAPP.
go back to reference El Gamal, A., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine, 21(3), 6–20.CrossRef El Gamal, A., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine, 21(3), 6–20.CrossRef
go back to reference Famouri, M., Bartoli, A., & Azimifar, Z. (2018). Fast shape-from-template using local features. Machine Vision and Applications, 29(1), 73–93.CrossRef Famouri, M., Bartoli, A., & Azimifar, Z. (2018). Fast shape-from-template using local features. Machine Vision and Applications, 29(1), 73–93.CrossRef
go back to reference Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRef Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRef
go back to reference Forssén, P. E., & Ringaby, E. (2010). Rectifying rolling shutter video from hand-held devices. In CVPR. Forssén, P. E., & Ringaby, E. (2010). Rectifying rolling shutter video from hand-held devices. In CVPR.
go back to reference Gallardo, M. (2018). Contributions to monocular deformable 3D reconstruction: Curvilinear objects and multiple visual cues. Ph.D. thesis, University Clermont Auvergne Gallardo, M. (2018). Contributions to monocular deformable 3D reconstruction: Curvilinear objects and multiple visual cues. Ph.D. thesis, University Clermont Auvergne
go back to reference Gao, X. S., Hou, X. R., Tang, J., & Cheng, H. F. (2003). Complete solution classification for the perspective-three-point problem. PAMI, 25(8), 930–943.CrossRef Gao, X. S., Hou, X. R., Tang, J., & Cheng, H. F. (2003). Complete solution classification for the perspective-three-point problem. PAMI, 25(8), 930–943.CrossRef
go back to reference Gotardo, P. F., & Martinez, A. M. (2011). Kernel non-rigid structure from motion. In ICCV. Gotardo, P. F., & Martinez, A. M. (2011). Kernel non-rigid structure from motion. In ICCV.
go back to reference Haouchine, N., Dequidt, J., Berger, M. O., & Cotin, S. (2014). Single view augmentation of 3D elastic objects. In ISMAR. Haouchine, N., Dequidt, J., Berger, M. O., & Cotin, S. (2014). Single view augmentation of 3D elastic objects. In ISMAR.
go back to reference Haralick, R. M., Lee, D., Ottenburg, K., & Nolle, M. (1991). Analysis and solutions of the three point perspective pose estimation problem. In CVPR. Haralick, R. M., Lee, D., Ottenburg, K., & Nolle, M. (1991). Analysis and solutions of the three point perspective pose estimation problem. In CVPR.
go back to reference Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. New York: Cambridge University Press.MATH Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. New York: Cambridge University Press.MATH
go back to reference Hedborg, J., Forssen, P. E., Felsberg, M., & Ringaby, E. (2012). Rolling shutter bundle adjustment. In CVPR. Hedborg, J., Forssen, P. E., Felsberg, M., & Ringaby, E. (2012). Rolling shutter bundle adjustment. In CVPR.
go back to reference Hedborg, J., Ringaby, E., Forssén, P. E., & Felsberg, M. (2011). Structure and motion estimation from rolling shutter video. In ICCV workshops. Hedborg, J., Ringaby, E., Forssén, P. E., & Felsberg, M. (2011). Structure and motion estimation from rolling shutter video. In ICCV workshops.
go back to reference Horn, B. K., Hilden, H. M., & Negahdaripour, S. (1988). Closed-form solution of absolute orientation using orthonormal matrices. JOSA A, 5(7), 1127–1135.MathSciNetCrossRef Horn, B. K., Hilden, H. M., & Negahdaripour, S. (1988). Closed-form solution of absolute orientation using orthonormal matrices. JOSA A, 5(7), 1127–1135.MathSciNetCrossRef
go back to reference Hu, Y., Zhang, D., Ye, J., Li, X., & He, X. (2013). Fast and accurate matrix completion via truncated nuclear norm regularization. PAMI, 35(9), 2117–2130.CrossRef Hu, Y., Zhang, D., Ye, J., Li, X., & He, X. (2013). Fast and accurate matrix completion via truncated nuclear norm regularization. PAMI, 35(9), 2117–2130.CrossRef
go back to reference Im, S., Ha, H., Choe, G., Jeon, H. G., Joo, K., & Kweon, I. S. (2018). Accurate 3D reconstruction from small motion clip for rolling shutter cameras. PAMI, 41(4), 775–787.CrossRef Im, S., Ha, H., Choe, G., Jeon, H. G., Joo, K., & Kweon, I. S. (2018). Accurate 3D reconstruction from small motion clip for rolling shutter cameras. PAMI, 41(4), 775–787.CrossRef
go back to reference Ito, E., & Okatani, T. (2017). Self-calibration-based approach to critical motion sequences of rolling-shutter structure from motion. In CVPR. Ito, E., & Okatani, T. (2017). Self-calibration-based approach to critical motion sequences of rolling-shutter structure from motion. In CVPR.
go back to reference Kim, J. H., Cadena, C., & Reid, I. (2016). Direct semi-dense slam for rolling shutter cameras. In ICRA. Kim, J. H., Cadena, C., & Reid, I. (2016). Direct semi-dense slam for rolling shutter cameras. In ICRA.
go back to reference Kumar, S., Ghorakavi, R. S., Dai, Y., & Li, H. (2019). Dense depth estimation of a complex dynamic scene without explicit 3D motion estimation. ArXiv preprint arXiv:1902.03791. Kumar, S., Ghorakavi, R. S., Dai, Y., & Li, H. (2019). Dense depth estimation of a complex dynamic scene without explicit 3D motion estimation. ArXiv preprint arXiv:​1902.​03791.
go back to reference Lao, Y., & Ait-Aider, O. (2018). A robust method for strong rolling shutter effects correction using lines with automatic feature selection. In CVPR. Lao, Y., & Ait-Aider, O. (2018). A robust method for strong rolling shutter effects correction using lines with automatic feature selection. In CVPR.
go back to reference Lao, Y., Ait-Aider, O., & Bartoli, A. (2018). Rolling shutter pose and ego-motion estimation using shape-from-template. In ECCV. Lao, Y., Ait-Aider, O., & Bartoli, A. (2018). Rolling shutter pose and ego-motion estimation using shape-from-template. In ECCV.
go back to reference Lee, J. (1997). Riemannian manifolds: An introduction to curvature. New York: Springer.CrossRef Lee, J. (1997). Riemannian manifolds: An introduction to curvature. New York: Springer.CrossRef
go back to reference Leng, D., & Sun, W. (2009). Finding all the solutions of PnP problem. In International workshop on imaging systems and techniques. Leng, D., & Sun, W. (2009). Finding all the solutions of PnP problem. In International workshop on imaging systems and techniques.
go back to reference Lovegrove, S., Patron-Perez, A., & Sibley, G. (2013). Spline fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In BMVC. Lovegrove, S., Patron-Perez, A., & Sibley, G. (2013). Spline fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In BMVC.
go back to reference Magerand, L., & Bartoli, A. (2010). A generic rolling shutter camera model and its application to dynamic pose estimation. In International symposium on 3D data processing, visualization and transmission. Magerand, L., & Bartoli, A. (2010). A generic rolling shutter camera model and its application to dynamic pose estimation. In International symposium on 3D data processing, visualization and transmission.
go back to reference Magerand, L., Bartoli, A., Ait-Aider, O., & Pizarro, D. (2012). Global optimization of object pose and motion from a single rolling shutter image with automatic 2D–3D matching. In ECCV. Magerand, L., Bartoli, A., Ait-Aider, O., & Pizarro, D. (2012). Global optimization of object pose and motion from a single rolling shutter image with automatic 2D–3D matching. In ECCV.
go back to reference Magnenat, S., Ngo, D. T., Zünd, F., Ryffel, M., Noris, G., Roethlin, G., et al. (2015). Live texturing of augmented reality characters from colored drawings. TVCG, 21(11), 1201–1210. Magnenat, S., Ngo, D. T., Zünd, F., Ryffel, M., Noris, G., Roethlin, G., et al. (2015). Live texturing of augmented reality characters from colored drawings. TVCG, 21(11), 1201–1210.
go back to reference Malti, A., Bartoli, A., & Hartley, R. (2015). A linear least-squares solution to elastic shape-from-template. In CVPR. Malti, A., Bartoli, A., & Hartley, R. (2015). A linear least-squares solution to elastic shape-from-template. In CVPR.
go back to reference Malti, A., & Herzet, C. (2017). Elastic shape-from-template with spatially sparse deforming forces. In CVPR. Malti, A., & Herzet, C. (2017). Elastic shape-from-template with spatially sparse deforming forces. In CVPR.
go back to reference Oth, L., Furgale, P., Kneip, L., & Siegwart, R. (2013). Rolling shutter camera calibration. In CVPR. Oth, L., Furgale, P., Kneip, L., & Siegwart, R. (2013). Rolling shutter camera calibration. In CVPR.
go back to reference Ovrén, H., & Forssén, P. (2018). Spline error weighting for robust visual-inertial fusion. In CVPR. Ovrén, H., & Forssén, P. (2018). Spline error weighting for robust visual-inertial fusion. In CVPR.
go back to reference Ovrén, H., & Forssén, P. (2019). Trajectory representation and landmark projection for continuous-time structure from motion. IJRR, 38(6), 686–701. Ovrén, H., & Forssén, P. (2019). Trajectory representation and landmark projection for continuous-time structure from motion. IJRR, 38(6), 686–701.
go back to reference Ovrén, H., Forssén, P., & Törnqvist, D. (2013). Why would I want a gyroscope on my RGB-D sensor? In IEEE workshop on robot vision. Ovrén, H., Forssén, P., & Törnqvist, D. (2013). Why would I want a gyroscope on my RGB-D sensor? In IEEE workshop on robot vision.
go back to reference Parashar, S., Pizarro, D., & Bartoli, A. (2018). Isometric non-rigid shape-from-motion with riemannian geometry solved in linear time. PAMI, 40(10), 2442–2454.CrossRef Parashar, S., Pizarro, D., & Bartoli, A. (2018). Isometric non-rigid shape-from-motion with riemannian geometry solved in linear time. PAMI, 40(10), 2442–2454.CrossRef
go back to reference Patron-Perez, A., Lovegrove, S., & Sibley, G. (2015). A spline-based trajectory representation for sensor fusion and rolling shutter cameras. IJCV, 113(3), 208–219.CrossRef Patron-Perez, A., Lovegrove, S., & Sibley, G. (2015). A spline-based trajectory representation for sensor fusion and rolling shutter cameras. IJCV, 113(3), 208–219.CrossRef
go back to reference Pizarro, D., & Bartoli, A. (2012). Feature-based deformable surface detection with self-occlusion reasoning. IJCV, 97(1), 54–70.CrossRef Pizarro, D., & Bartoli, A. (2012). Feature-based deformable surface detection with self-occlusion reasoning. IJCV, 97(1), 54–70.CrossRef
go back to reference Purkait, P., Zach, C., & Leonardis, A. (2017). Rolling shutter correction in Manhattan world. In ICCV (pp. 882–890). Purkait, P., Zach, C., & Leonardis, A. (2017). Rolling shutter correction in Manhattan world. In ICCV (pp. 882–890).
go back to reference Quan, L., & Lan, Z. (1999). Linear \(n\)-point camera pose determination. PAMI, 21(8), 774–780.CrossRef Quan, L., & Lan, Z. (1999). Linear \(n\)-point camera pose determination. PAMI, 21(8), 774–780.CrossRef
go back to reference Rengarajan, V., Balaji, Y., & Rajagopalan, A. (2017). Unrolling the shutter: CNN to correct motion distortions. In CVPR. Rengarajan, V., Balaji, Y., & Rajagopalan, A. (2017). Unrolling the shutter: CNN to correct motion distortions. In CVPR.
go back to reference Rengarajan, V., Rajagopalan, A. N., & Aravind, R. (2016). From bows to arrows: Rolling shutter rectification of urban scenes. In CVPR. Rengarajan, V., Rajagopalan, A. N., & Aravind, R. (2016). From bows to arrows: Rolling shutter rectification of urban scenes. In CVPR.
go back to reference Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. TMI, 18(8), 712–721. Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. TMI, 18(8), 712–721.
go back to reference Russell, C., Yu, R., & Agapito, L. (2014). Video pop-up: Monocular 3D reconstruction of dynamic scenes. In ECCV. Russell, C., Yu, R., & Agapito, L. (2014). Video pop-up: Monocular 3D reconstruction of dynamic scenes. In ECCV.
go back to reference Salzmann, M., & Fua, P. (2011). Linear local models for monocular reconstruction of deformable surfaces. PAMI, 33(5), 931–944.CrossRef Salzmann, M., & Fua, P. (2011). Linear local models for monocular reconstruction of deformable surfaces. PAMI, 33(5), 931–944.CrossRef
go back to reference Saurer, O., Koser, K., Bouguet, J. Y., & Pollefeys, M. (2013). Rolling shutter stereo. In ICCV. Saurer, O., Koser, K., Bouguet, J. Y., & Pollefeys, M. (2013). Rolling shutter stereo. In ICCV.
go back to reference Saurer, O., Pollefeys, M., & Hee Lee, G. (2016). Sparse to dense 3D reconstruction from rolling shutter images. In CVPR. Saurer, O., Pollefeys, M., & Hee Lee, G. (2016). Sparse to dense 3D reconstruction from rolling shutter images. In CVPR.
go back to reference Saurer, O., Pollefeys, M., & Lee, G. H. (2015). A minimal solution to the rolling shutter pose estimation problem. In IROS. Saurer, O., Pollefeys, M., & Lee, G. H. (2015). A minimal solution to the rolling shutter pose estimation problem. In IROS.
go back to reference Taylor, J., Jepson, A. D., & Kutulakos, K. N. (2010). Non-rigid structure from locally-rigid motion. In CVPR. Taylor, J., Jepson, A. D., & Kutulakos, K. N. (2010). Non-rigid structure from locally-rigid motion. In CVPR.
go back to reference Varol, A., Salzmann, M., Tola, E., & Fua, P. (2009). Template-free monocular reconstruction of deformable surfaces. In ICCV. Varol, A., Salzmann, M., Tola, E., & Fua, P. (2009). Template-free monocular reconstruction of deformable surfaces. In ICCV.
go back to reference Wu, C. (2013). Towards linear-time incremental structure from motion. In International Conference on 3D Vision-3DV 2013 (pp.127–134). IEEE. Wu, C. (2013). Towards linear-time incremental structure from motion. In International Conference on 3D Vision-3DV 2013 (pp.127–134). IEEE.
go back to reference Zhuang, B., Cheong, L. F., & Lee, G. H. (2017). Rolling-shutter-aware differential SfM and image rectification. In ICCV. Zhuang, B., Cheong, L. F., & Lee, G. H. (2017). Rolling-shutter-aware differential SfM and image rectification. In ICCV.
go back to reference Zhuang, B., Tran, Q., Ji, P., Cheong, L., & Chandraker, M. (2019). Learning structure-and-motion-aware rolling shutter correction. In CVPR. Zhuang, B., Tran, Q., Ji, P., Cheong, L., & Chandraker, M. (2019). Learning structure-and-motion-aware rolling shutter correction. In CVPR.
Metadata
Title
Solving Rolling Shutter 3D Vision Problems using Analogies with Non-rigidity
Authors
Yizhen Lao
Omar Ait-Aider
Adrien Bartoli
Publication date
17-08-2020
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 1/2021
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-020-01368-1

Other articles of this Issue 1/2021

International Journal of Computer Vision 1/2021 Go to the issue

Premium Partner