Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2023

08-05-2023

Solving Some Problems of Crack Mechanics for a Normal Edge Crack in Orthotropic Solid Within the Cohesive Zone Model Approach

Authors: M. Selivanov, V. Bogdanov, H. Altenbach

Published in: Mechanics of Composite Materials | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A problem of an edge crack with a fracture process zone in semi-infinite orthotropic planes under the pure- and mixed-mode loading (I and II modes) was studied. A cohesive zone with different cohesive lengths in opening and sliding modes (multiple cohesive zone) was used to simulate the fracture process zone. The smooth crack closure condition defines cohesive lengths of the two fracture modes. The problem of an edge crack that is normal to the plate edge was formulated in terms of integral equations for the unknown displacement discontinuity along the crack. A collocation method applied to two singular integral equations with Cauchy kernel gave the equations for critical loads and respective discrete cohesive tractions and separations. These equations are non-linear since a dependence of cohesive tractions on crack opening was taken according to potential-based traction–separation law. An iterative procedure was used to satisfy the condition of smooth crack closure. A generalization of the potential, well-known in the literature, was used to generate the cohesive traction field. The potential combines pure-mode laws without mode-mixity parameters. Two types of generalized potential functions were considered, and a critical analysis was carried out. Numerical solutions were presented for the cohesive tractions and separations in critical state when both pure-mode cohesive laws were trapezoidal shaped. Comparison of the fracture loci obtained for two types of generalized potentials allowed us to conclude that the type strongly influences the critical state parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. P. Clech, L. M. Keer and J. L. Lewis, “A model of tension and compression cracks with cohesive zone at a bonecement interface,” ASME. J. Biomech. Eng., 107, No. 2, 175-182 (1985).CrossRef J. P. Clech, L. M. Keer and J. L. Lewis, “A model of tension and compression cracks with cohesive zone at a bonecement interface,” ASME. J. Biomech. Eng., 107, No. 2, 175-182 (1985).CrossRef
2.
go back to reference H. Altenbach, V. M. Nazarenko and V. L. Bogdanov, “Influence of initial stress on fracture of a halfspace containing a penny-shaped crack under radial shear,” Int. J. Fract., 104, 275-289 (2000). H. Altenbach, V. M. Nazarenko and V. L. Bogdanov, “Influence of initial stress on fracture of a halfspace containing a penny-shaped crack under radial shear,” Int. J. Fract., 104, 275-289 (2000).
3.
go back to reference V. L. Bogdanov, “On a circular shear crack in a semi-infinite composite with initial stresses,” Mat. Sci., 43, No. 3, 321-330 (2007).CrossRef V. L. Bogdanov, “On a circular shear crack in a semi-infinite composite with initial stresses,” Mat. Sci., 43, No. 3, 321-330 (2007).CrossRef
4.
go back to reference V. L. Bogdanov and V. M. Nazarenko, “Study of the compressive failure of a semi-infinite elastic material with a harmonic potential,” Int. Appl. Mech., 30, No. 10, 760-765 (1994).CrossRef V. L. Bogdanov and V. M. Nazarenko, “Study of the compressive failure of a semi-infinite elastic material with a harmonic potential,” Int. Appl. Mech., 30, No. 10, 760-765 (1994).CrossRef
5.
go back to reference V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No. 3, 371-384 (2010).CrossRef V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No. 3, 371-384 (2010).CrossRef
6.
go back to reference V. L. Bogdanov, A. N. Guz and V. M. Nazarenko, “Stress–strain state of a material under forces acting along a periodic set of coaxial mode II penny-shaped cracks,” Int. Appl. Mech., 47, No. 12, 1339-1350 (2011).CrossRef V. L. Bogdanov, A. N. Guz and V. M. Nazarenko, “Stress–strain state of a material under forces acting along a periodic set of coaxial mode II penny-shaped cracks,” Int. Appl. Mech., 47, No. 12, 1339-1350 (2011).CrossRef
7.
go back to reference V. L. Bogdanov, “Influence of initial stresses on the stressed state of a composite with a periodic system of parallel coaxial normal tensile cracks,” J. Math. Sci., 186, No. 1, 1-13 (2012).CrossRef V. L. Bogdanov, “Influence of initial stresses on the stressed state of a composite with a periodic system of parallel coaxial normal tensile cracks,” J. Math. Sci., 186, No. 1, 1-13 (2012).CrossRef
8.
go back to reference V. L. Bogdanov, A. N. Guz and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64-84 (2015).CrossRef V. L. Bogdanov, A. N. Guz and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64-84 (2015).CrossRef
9.
go back to reference O. Bowie and P. Tracy, “On the solution of the Dugdale model,” Eng. Fract. Mech., 10, 249-256 (1978).CrossRef O. Bowie and P. Tracy, “On the solution of the Dugdale model,” Eng. Fract. Mech., 10, 249-256 (1978).CrossRef
10.
go back to reference I. Howard and N. Otter, “On the elastic–plastic deformation of a sheet containing an edge crack,” J. Mech. Phys. Solids., 23, 139-149 (1975).CrossRef I. Howard and N. Otter, “On the elastic–plastic deformation of a sheet containing an edge crack,” J. Mech. Phys. Solids., 23, 139-149 (1975).CrossRef
11.
go back to reference H. Petroski, “Dugdale plastic zone sizes for edge cracks,” Int. J. Fract., 15, No. 3, 217-230 (1979).CrossRef H. Petroski, “Dugdale plastic zone sizes for edge cracks,” Int. J. Fract., 15, No. 3, 217-230 (1979).CrossRef
12.
go back to reference V. D. Kuliev, “Plastic deformation at the tip of an edge crack,” J. Appl. Math. Mech., 43, 171-178 (1979).CrossRef V. D. Kuliev, “Plastic deformation at the tip of an edge crack,” J. Appl. Math. Mech., 43, 171-178 (1979).CrossRef
13.
go back to reference B. M. Singh, H. T. Danyluk and J. Vrbik, “A note on plastic deformation at the tip of an edge crack,” Acta Mech., 55, 81-86 (1985).CrossRef B. M. Singh, H. T. Danyluk and J. Vrbik, “A note on plastic deformation at the tip of an edge crack,” Acta Mech., 55, 81-86 (1985).CrossRef
14.
go back to reference D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, 100-104 (1960).CrossRef D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, 100-104 (1960).CrossRef
15.
go back to reference G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv. Appl. Mech., 7, 55-129 (1962).CrossRef G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv. Appl. Mech., 7, 55-129 (1962).CrossRef
16.
go back to reference A. Hillerborg, M. Modeer and P. E. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cem. Concr. Res., 6, 773-781 (1976).CrossRef A. Hillerborg, M. Modeer and P. E. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cem. Concr. Res., 6, 773-781 (1976).CrossRef
17.
go back to reference H. Ferdjani and R. Abdelmoula, “Propagation of a Dugdale crack at the edge of a half plane,” Continuum Mech. Thermodyn., 30, 195-205 (2018).CrossRef H. Ferdjani and R. Abdelmoula, “Propagation of a Dugdale crack at the edge of a half plane,” Continuum Mech. Thermodyn., 30, 195-205 (2018).CrossRef
18.
go back to reference S. Wang and J. P. Dempsey, “A cohesive edge crack,” Eng. Fract. Mech., 78, 1353-1373 (2011).CrossRef S. Wang and J. P. Dempsey, “A cohesive edge crack,” Eng. Fract. Mech., 78, 1353-1373 (2011).CrossRef
19.
go back to reference L. T. Thanh, L. A. Belaya and I. M. Lavit, J. Phys.: Conf. Ser. 973, 012020 (2018). L. T. Thanh, L. A. Belaya and I. M. Lavit, J. Phys.: Conf. Ser. 973, 012020 (2018).
20.
go back to reference M. Selivanov, “An edge crack with cohesive zone [in Ukrainian],” Dopov. Nac. akad. Nauk Ukr., No. 3, 46-54 (2019). M. Selivanov, “An edge crack with cohesive zone [in Ukrainian],” Dopov. Nac. akad. Nauk Ukr., No. 3, 46-54 (2019).
21.
go back to reference M. Selivanov, “Solving a problem on an edge crack with cohesive zone by the regularization of a singular integral equation [in Ukrainian],” Dopov. Nac. akad. Nauk Ukr, No. 5, 34-43 (2019). M. Selivanov, “Solving a problem on an edge crack with cohesive zone by the regularization of a singular integral equation [in Ukrainian],” Dopov. Nac. akad. Nauk Ukr, No. 5, 34-43 (2019).
22.
go back to reference M. Selivanov, “An edge crack with cohesive zone in orthotropic body [in Ukrainian],” Dopov. Nac. akad. nauk Ukr., No. 6, 25-34 (2019). M. Selivanov, “An edge crack with cohesive zone in orthotropic body [in Ukrainian],” Dopov. Nac. akad. nauk Ukr., No. 6, 25-34 (2019).
23.
go back to reference A. Needleman, “A continuum model for void nucleation by inclusion debonding,” J. Appl. Mech., 54, 525-531 (1987).CrossRef A. Needleman, “A continuum model for void nucleation by inclusion debonding,” J. Appl. Mech., 54, 525-531 (1987).CrossRef
24.
go back to reference C. Y. Hui et al., “Cohesive zone models and fracture,” J. Adhesion, 87, 1-52 (2011).CrossRef C. Y. Hui et al., “Cohesive zone models and fracture,” J. Adhesion, 87, 1-52 (2011).CrossRef
25.
go back to reference K. Park, G. H. Paulino and J. R. Roesler, “A unified potential-based cohesive model of mixed-mode fracture,” J. Mech. Phys. Solids, 57, No. 6, 891-908 (2009).CrossRef K. Park, G. H. Paulino and J. R. Roesler, “A unified potential-based cohesive model of mixed-mode fracture,” J. Mech. Phys. Solids, 57, No. 6, 891-908 (2009).CrossRef
26.
go back to reference K. Park and G. H. Paulino, “Cohesive zone models: A critical review of traction–separation relationships across fracture surfaces,” Appl. Mech. Reviews, 64, No. 6, 060802–20 (2013).CrossRef K. Park and G. H. Paulino, “Cohesive zone models: A critical review of traction–separation relationships across fracture surfaces,” Appl. Mech. Reviews, 64, No. 6, 060802–20 (2013).CrossRef
27.
go back to reference M. Selivanov, “Subcritical and critical states of a crack with failure zones,” Appl. Math. Model., 72, 104-128 (2019).CrossRef M. Selivanov, “Subcritical and critical states of a crack with failure zones,” Appl. Math. Model., 72, 104-128 (2019).CrossRef
28.
go back to reference M. Selivanov and Y. Chornoivan, “A semi-analytical solution method for problems of cohesive fracture and some of its applications,” Int. J. Fract., 212, No. 1, 113-121 (2018).CrossRef M. Selivanov and Y. Chornoivan, “A semi-analytical solution method for problems of cohesive fracture and some of its applications,” Int. J. Fract., 212, No. 1, 113-121 (2018).CrossRef
29.
go back to reference M. Selivanov, Y. Chornoivan and O. Kononchuk, “Determination of crack opening displacement and critical load parameter within a cohesive zone model,” Continuum Mech. Thermodyn., 31, No. 2, 569-586 (2018).CrossRef M. Selivanov, Y. Chornoivan and O. Kononchuk, “Determination of crack opening displacement and critical load parameter within a cohesive zone model,” Continuum Mech. Thermodyn., 31, No. 2, 569-586 (2018).CrossRef
30.
go back to reference Z. H. Jin and C. T. Sun, “Cohesive zone modeling of interface fracture in elastic bi-materials,” Eng. Fract. Mech., 72, 1805-1817 (2005).CrossRef Z. H. Jin and C. T. Sun, “Cohesive zone modeling of interface fracture in elastic bi-materials,” Eng. Fract. Mech., 72, 1805-1817 (2005).CrossRef
31.
go back to reference J. Sweeney, “The stress intensity for an edge crack in a semi-infinite orthotropic body,” Int. J. Fract., 37, 233-241 (1988).CrossRef J. Sweeney, “The stress intensity for an edge crack in a semi-infinite orthotropic body,” Int. J. Fract., 37, 233-241 (1988).CrossRef
32.
go back to reference Z. Suo, “Delamination specimens for orthotropic materials,” J. Appl. Mech., 57, 627-634 (1990).CrossRef Z. Suo, “Delamination specimens for orthotropic materials,” J. Appl. Mech., 57, 627-634 (1990).CrossRef
33.
go back to reference K. B. Broberg, Cracks and Fracture. Academic Press, London (1999). K. B. Broberg, Cracks and Fracture. Academic Press, London (1999).
34.
go back to reference F. Erdogan, G. D. Gupta and T. S. Cook, “Numerical solution of singular integral equations,” in: G. C. Sih (eds.) Methods of analysis and solutions of crack problems. Mechanics of Fracture, 1, Springer, Dordrecht (1973), pp. 368-425. F. Erdogan, G. D. Gupta and T. S. Cook, “Numerical solution of singular integral equations,” in: G. C. Sih (eds.) Methods of analysis and solutions of crack problems. Mechanics of Fracture, 1, Springer, Dordrecht (1973), pp. 368-425.
35.
go back to reference A. Kaminsky, M. Selivanov and Y. Chornoivan, “Cohesive zone length influence on the critical load for a body with mode I crack [in Ukrainian],” Dopov. Nac. akad. nauk Ukr., No. 8., 36-44 (2018). A. Kaminsky, M. Selivanov and Y. Chornoivan, “Cohesive zone length influence on the critical load for a body with mode I crack [in Ukrainian],” Dopov. Nac. akad. nauk Ukr., No. 8., 36-44 (2018).
36.
go back to reference M. P. Savruk, E. Madenci and S. Shkarayev, “Singular integral equations of the second kind with generalized Cauchytype kernels and variable coefficients,” Int. J. Numer. Meth. Eng., 45, 1457-1470 (1999).CrossRef M. P. Savruk, E. Madenci and S. Shkarayev, “Singular integral equations of the second kind with generalized Cauchytype kernels and variable coefficients,” Int. J. Numer. Meth. Eng., 45, 1457-1470 (1999).CrossRef
37.
go back to reference M. Selivanov, “Quasi-static problems of fracture mechanics for elastic and viscoelastic bodies in the framework of cohesive zone models [in Ukrainian],” Dr. Sci. Thesis. S.P. Timoshenko Institute of Mechanics, National Academy of Sciences Ukraine, Kyiv (2017). M. Selivanov, “Quasi-static problems of fracture mechanics for elastic and viscoelastic bodies in the framework of cohesive zone models [in Ukrainian],” Dr. Sci. Thesis. S.P. Timoshenko Institute of Mechanics, National Academy of Sciences Ukraine, Kyiv (2017).
38.
go back to reference F. P. Gerstle, “Composites”. In: Encyclopedia of Polymer Science and Engineering. Wiley, New York (1991). F. P. Gerstle, “Composites”. In: Encyclopedia of Polymer Science and Engineering. Wiley, New York (1991).
39.
go back to reference C. Zweben, “Composite materials”. In: Mechanical Engineers’ Handbook. Ed. by M. Kutz. 4th ed. John Wiley & Sons, Inc. (2015). C. Zweben, “Composite materials”. In: Mechanical Engineers’ Handbook. Ed. by M. Kutz. 4th ed. John Wiley & Sons, Inc. (2015).
40.
go back to reference R. Dimitri et al., “A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems,” Frattura ed Integrità Strutturale, 46, 266-283 (2014).CrossRef R. Dimitri et al., “A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems,” Frattura ed Integrità Strutturale, 46, 266-283 (2014).CrossRef
41.
go back to reference M. Selivanov, L. Nazarenko, and H. Altenbach, “Modeling the slow crack growth of an edge crack within the cohesive zone model approach”. in: I. Giorgio et al. (eds.) Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, pp. 505-535, Advanced Structured Materials, vol. 175, Springer International Publishing, Cham, (2022). M. Selivanov, L. Nazarenko, and H. Altenbach, “Modeling the slow crack growth of an edge crack within the cohesive zone model approach”. in: I. Giorgio et al. (eds.) Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, pp. 505-535, Advanced Structured Materials, vol. 175, Springer International Publishing, Cham, (2022).
42.
go back to reference A. Kaminsky and M. Selivanov, “Modeling subcritical crack growth in a viscoelastic body under concentrated forces,”Int. Appl. Mech., 53, No. 4, 538-544 (2017).CrossRef A. Kaminsky and M. Selivanov, “Modeling subcritical crack growth in a viscoelastic body under concentrated forces,”Int. Appl. Mech., 53, No. 4, 538-544 (2017).CrossRef
43.
go back to reference H. Stang et al. “On the application of cohesive crack modeling in cementitious materials,” Mater. Struct., 40, 365-374 (2007).CrossRef H. Stang et al. “On the application of cohesive crack modeling in cementitious materials,” Mater. Struct., 40, 365-374 (2007).CrossRef
44.
go back to reference A. Kaminsky and E. Kurchakov, “Fracture process zone at the tip of a mode I crack in a nonlinear elastic orthotropic material,” Int. Appl. Mech., 55, No. 1, 23-40 (2019).CrossRef A. Kaminsky and E. Kurchakov, “Fracture process zone at the tip of a mode I crack in a nonlinear elastic orthotropic material,” Int. Appl. Mech., 55, No. 1, 23-40 (2019).CrossRef
45.
go back to reference D. Engwirda, “Locally-optimal Delaunay-refinement and optimisation-based mesh generation,” Ph.D. Thesis. School of Mathematics and Statistics, Univ. of Sydney (2014). D. Engwirda, “Locally-optimal Delaunay-refinement and optimisation-based mesh generation,” Ph.D. Thesis. School of Mathematics and Statistics, Univ. of Sydney (2014).
46.
go back to reference D. Engwirda and D. Ivers, “Off-centre Steiner points for Delaunay-refinement on curved surfaces,” Computer-Aided Design, 72, 157-171 (2016).CrossRef D. Engwirda and D. Ivers, “Off-centre Steiner points for Delaunay-refinement on curved surfaces,” Computer-Aided Design, 72, 157-171 (2016).CrossRef
Metadata
Title
Solving Some Problems of Crack Mechanics for a Normal Edge Crack in Orthotropic Solid Within the Cohesive Zone Model Approach
Authors
M. Selivanov
V. Bogdanov
H. Altenbach
Publication date
08-05-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10099-6

Other articles of this Issue 2/2023

Mechanics of Composite Materials 2/2023 Go to the issue

Premium Partners