Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2021

02-01-2021

Solvothermal preparation of Co-doped CoxV6−xO13 of cathode materials for lithium-ion batteries

Authors: Huanhuan Zhang, Zhengguang Zou, Shengyu Li, Yanjiao Zhang, Shuchao Zhang, Jie Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

V6O13 cathode materials have received great attention owing to its high theoretical specific capacity and energy density; however, the poor cycle stability and rate performance have constrained their development. In this experiment, the nanorod-like Co-doped V6O13 with a theoretical equation of CoxV6−xO13 was synthesized for the first time by one-step solvothermal method, and investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tests of electrochemical performances. When x = 0.03, the material shows the best electrochemical performance, the sample has the best discharge specific capacity of 377.3 mAh/g at the beginning, and the capacity retention is 54.4% after 100 cycles at 0.1 C (42 mA/g), comparing with those of the pure V6O13 only 279.4 mAh/g and 37.6% in the same condition. The increase in specific surface area and structural stability promoted the kinetics of the chemical reaction and improved the electrochemical properties of the material. The applicability of this method was further examined through a series of tests and analysis of disassembled batteries after cycle, and the evidences that proper Co doping can stable the structure of materials are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun. 8, 1553–1557 (2006)CrossRef H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun. 8, 1553–1557 (2006)CrossRef
2.
go back to reference J. Lindgren, I. Asghar, P.D. Lund, A hybrid lithium-ion battery model for system-level analyses. Int. J. Energy Res. 40, 1576–1592 (2016)CrossRef J. Lindgren, I. Asghar, P.D. Lund, A hybrid lithium-ion battery model for system-level analyses. Int. J. Energy Res. 40, 1576–1592 (2016)CrossRef
3.
go back to reference H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)CrossRef H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)CrossRef
4.
go back to reference C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube–graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4839–4846 (2012)CrossRef C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube–graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4839–4846 (2012)CrossRef
5.
go back to reference X. Zhang, K. Wang, X. Wei, J. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23, 5290–5292 (2011)CrossRef X. Zhang, K. Wang, X. Wei, J. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23, 5290–5292 (2011)CrossRef
6.
go back to reference Y. Wang, T. Cheng, Z.E. Yu, Y. Lyu, B. Guo, Study on the effect of Ni and Mn doping on the structural evolution of LiCoO2 under 4.6 V high-voltage cycling. J. Alloys Compd. 825, 155827 (2020)CrossRef Y. Wang, T. Cheng, Z.E. Yu, Y. Lyu, B. Guo, Study on the effect of Ni and Mn doping on the structural evolution of LiCoO2 under 4.6 V high-voltage cycling. J. Alloys Compd. 825, 155827 (2020)CrossRef
7.
go back to reference H. Ronduda, M. Zybert, A. Szczęsna, T. Trzeciak, A. Ostrowski, P. Wieciński, M. Marcinek, Addition of yttrium oxide as an effective way to enhance the cycling stability of LiCoO2 cathode material for Li-ion batteries. Solid State Ionics 355, 115426 (2020)CrossRef H. Ronduda, M. Zybert, A. Szczęsna, T. Trzeciak, A. Ostrowski, P. Wieciński, M. Marcinek, Addition of yttrium oxide as an effective way to enhance the cycling stability of LiCoO2 cathode material for Li-ion batteries. Solid State Ionics 355, 115426 (2020)CrossRef
8.
go back to reference W.C. Chien, H. Zong-Ming, Preparation of LiFe1-xMnxPO4/C cathode materials at a pH of 6.5 using a hydrothermal process with high-temperature calcination. Thin Solid Films 700, 137890 (2020)CrossRef W.C. Chien, H. Zong-Ming, Preparation of LiFe1-xMnxPO4/C cathode materials at a pH of 6.5 using a hydrothermal process with high-temperature calcination. Thin Solid Films 700, 137890 (2020)CrossRef
9.
go back to reference X. Wu, Z. Zou, S. Li, Y. Zhang, Solvothermal preparation of Ga-doped V6O13 nanowires as cathode materials for lithium-ion batteries. Ionics 25, 4557–4565 (2019)CrossRef X. Wu, Z. Zou, S. Li, Y. Zhang, Solvothermal preparation of Ga-doped V6O13 nanowires as cathode materials for lithium-ion batteries. Ionics 25, 4557–4565 (2019)CrossRef
10.
go back to reference S. Ni, J. Liu, D. Chao, L. Mai, Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv. Energy Mater. 9, 1803324 (2019)CrossRef S. Ni, J. Liu, D. Chao, L. Mai, Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv. Energy Mater. 9, 1803324 (2019)CrossRef
11.
go back to reference X.Y. Wu, Z. Zou, Q. Yang, Y. Zhang, Magnetic stirring assisted hydrothermal synthesis of fibrous-V6O13 cathode material for lithium-ion battery. Mater. Lett. 235, 176–179 (2019)CrossRef X.Y. Wu, Z. Zou, Q. Yang, Y. Zhang, Magnetic stirring assisted hydrothermal synthesis of fibrous-V6O13 cathode material for lithium-ion battery. Mater. Lett. 235, 176–179 (2019)CrossRef
12.
go back to reference M.S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, Y. Tong, Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces. 8, 9733–9744 (2016)CrossRef M.S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, Y. Tong, Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces. 8, 9733–9744 (2016)CrossRef
13.
go back to reference S. Wang, J. Qin, Y. Zhang, F. Xia, M. Liu, H. Chen, J. Song, Tungsten-doped nanocrystalline V6O13 nanoparticles as low-cost and high-performance electrodes for energy storage devices. Energy Technol. 7, 1801041 (2019)CrossRef S. Wang, J. Qin, Y. Zhang, F. Xia, M. Liu, H. Chen, J. Song, Tungsten-doped nanocrystalline V6O13 nanoparticles as low-cost and high-performance electrodes for energy storage devices. Energy Technol. 7, 1801041 (2019)CrossRef
14.
go back to reference W. Meng, R. Pigliapochi, P. Bayley, Unraveling the complex delithiation and lithiation mechanisms of the high capacity cathode material V6O13. Chem. Mater. 29, 5513–5524 (2017)CrossRef W. Meng, R. Pigliapochi, P. Bayley, Unraveling the complex delithiation and lithiation mechanisms of the high capacity cathode material V6O13. Chem. Mater. 29, 5513–5524 (2017)CrossRef
15.
go back to reference J. Barker, R. Koksbang, The interfacial impedance variation of V6O13 composite electrodes during lithium insertion and extraction. Electrochim. Acta 40, 673–679 (1995)CrossRef J. Barker, R. Koksbang, The interfacial impedance variation of V6O13 composite electrodes during lithium insertion and extraction. Electrochim. Acta 40, 673–679 (1995)CrossRef
16.
go back to reference X. Tian, X. Xu, L. He, Q. Wei, M. Yan, L. Xu, Y. Zhao, C. Yang, L. Mai, Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J. Power Sources 255, 235–241 (2014)CrossRef X. Tian, X. Xu, L. He, Q. Wei, M. Yan, L. Xu, Y. Zhao, C. Yang, L. Mai, Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J. Power Sources 255, 235–241 (2014)CrossRef
17.
go back to reference S. Li, Z. Zou, X. Wu, Y. Zhang, Solvothermal preparation of carbon coated V6O13 nanocomposite as cathode material for lithium-ion battery. J. Electroanal. Chem. 846, 113173 (2019)CrossRef S. Li, Z. Zou, X. Wu, Y. Zhang, Solvothermal preparation of carbon coated V6O13 nanocomposite as cathode material for lithium-ion battery. J. Electroanal. Chem. 846, 113173 (2019)CrossRef
18.
go back to reference J. He, F. Long, Z. Zou, W. Wang, Z. Fu, Hydrothermal synthesis and electrochemical performance of Mn-doped V6O13 as cathode material for lithium-ion battery. Ionics 21, 995–1001 (2015)CrossRef J. He, F. Long, Z. Zou, W. Wang, Z. Fu, Hydrothermal synthesis and electrochemical performance of Mn-doped V6O13 as cathode material for lithium-ion battery. Ionics 21, 995–1001 (2015)CrossRef
19.
go back to reference Z.Y. Yan, Z.G. Zou, F. Long, H.X. Chen, Synthesis and electrochemical properties of Cr doped V6O13 cathode materials for Li-ion batteries. J. Synth. Cryst. 44, 2191–2198 (2015) Z.Y. Yan, Z.G. Zou, F. Long, H.X. Chen, Synthesis and electrochemical properties of Cr doped V6O13 cathode materials for Li-ion batteries. J. Synth. Cryst. 44, 2191–2198 (2015)
20.
go back to reference Z.G. Zou, Q. Yuan, J. Wang, Hydrothermal synthesis of high specific capacity Al-doped V6O13 cathode material for lithium-ion battery. Int. J. Electrochem. Sci. 12, 1670–1679 (2017)CrossRef Z.G. Zou, Q. Yuan, J. Wang, Hydrothermal synthesis of high specific capacity Al-doped V6O13 cathode material for lithium-ion battery. Int. J. Electrochem. Sci. 12, 1670–1679 (2017)CrossRef
21.
go back to reference X.Y. Wu, Z. Zou, S. Li, Q. Yang, Solvothermal preparation of Al/Fe-doped V6O13 as cathode materials for lithium-ion batteries with enhanced electrochemical performance. J. Electroanal. Chem. 829, 20–26 (2018)CrossRef X.Y. Wu, Z. Zou, S. Li, Q. Yang, Solvothermal preparation of Al/Fe-doped V6O13 as cathode materials for lithium-ion batteries with enhanced electrochemical performance. J. Electroanal. Chem. 829, 20–26 (2018)CrossRef
22.
go back to reference T. Lv, Z. Zou, Y. Li, S. Li, Y, Hydrothermal synthesis of high specific capacity Al/Na co-doped V6O13 cathode material for lithium-ion battery. J. Electroanal. Chem. 829, 42–50 (2018)CrossRef T. Lv, Z. Zou, Y. Li, S. Li, Y, Hydrothermal synthesis of high specific capacity Al/Na co-doped V6O13 cathode material for lithium-ion battery. J. Electroanal. Chem. 829, 42–50 (2018)CrossRef
23.
go back to reference S. Ni, X. Lv, J. Ma, X. Yang, L. Zhang, Electrochemical characteristics of lithium vanadate, Li3VO4 as a new sort of anode material for Li-ion batteries. J. Power Sources 248, 122–129 (2014)CrossRef S. Ni, X. Lv, J. Ma, X. Yang, L. Zhang, Electrochemical characteristics of lithium vanadate, Li3VO4 as a new sort of anode material for Li-ion batteries. J. Power Sources 248, 122–129 (2014)CrossRef
24.
go back to reference X. Chen, X. Wang, Z. Wang, J. Wan, J. Liu, Y. Qian, An ethylene glycol reduction approach to metastable VO2 nanowire arrays. Nanotechnology 15, 1685 (2004)CrossRef X. Chen, X. Wang, Z. Wang, J. Wan, J. Liu, Y. Qian, An ethylene glycol reduction approach to metastable VO2 nanowire arrays. Nanotechnology 15, 1685 (2004)CrossRef
25.
go back to reference X. Liu, G. Xie, C. Huang, Q. Xu, Y. Zhang, Y. Luo, A facile method for preparing VO2 nanobelts. Mater. Lett. 62, 1878–1880 (2008)CrossRef X. Liu, G. Xie, C. Huang, Q. Xu, Y. Zhang, Y. Luo, A facile method for preparing VO2 nanobelts. Mater. Lett. 62, 1878–1880 (2008)CrossRef
26.
go back to reference X. Wu, Z. Wu, C. Ji, H. Zhang, Y. Su, Z. Huang, J. Gou, X. Wei, J. Wang, Y. Jiang, THz transmittance and electrical properties tuning across IMT in vanadium dioxide films by Al doping. ACS Appl. Mater. Interfaces. 8, 11842–11850 (2016)CrossRef X. Wu, Z. Wu, C. Ji, H. Zhang, Y. Su, Z. Huang, J. Gou, X. Wei, J. Wang, Y. Jiang, THz transmittance and electrical properties tuning across IMT in vanadium dioxide films by Al doping. ACS Appl. Mater. Interfaces. 8, 11842–11850 (2016)CrossRef
27.
go back to reference H. Liu, G. Wen, S. Bi, C. Wang, J. Hao, P. Gao, High rate cycle performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries. Electrochim. Acta 192, 38–44 (2016)CrossRef H. Liu, G. Wen, S. Bi, C. Wang, J. Hao, P. Gao, High rate cycle performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries. Electrochim. Acta 192, 38–44 (2016)CrossRef
28.
go back to reference X. Zhou, G. Wu, G. Gao, J. Wang, H. Yang, J. Wu, J. Shen, B. Zhou, Z. Zhang, Electrochemical performance improvement of vanadium oxide nanotubes as cathode materials for lithium ion batteries through ferric ion exchange technique. J. Phys. Chem. C 116, 21685–21692 (2012)CrossRef X. Zhou, G. Wu, G. Gao, J. Wang, H. Yang, J. Wu, J. Shen, B. Zhou, Z. Zhang, Electrochemical performance improvement of vanadium oxide nanotubes as cathode materials for lithium ion batteries through ferric ion exchange technique. J. Phys. Chem. C 116, 21685–21692 (2012)CrossRef
29.
go back to reference J. Li, E. Murphy, J. Winnick, P.A. Kohl, Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. J. Power Sources 102, 294–301 (2001)CrossRef J. Li, E. Murphy, J. Winnick, P.A. Kohl, Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. J. Power Sources 102, 294–301 (2001)CrossRef
30.
go back to reference E. Samadani, M. Mastali, S. Farhad, R.A. Fraser, M. Fowler, Li-ion battery performance and degradation in electric vehicles under different usage scenarios. Int. J. Energy Res. 40, 379–392 (2016)CrossRef E. Samadani, M. Mastali, S. Farhad, R.A. Fraser, M. Fowler, Li-ion battery performance and degradation in electric vehicles under different usage scenarios. Int. J. Energy Res. 40, 379–392 (2016)CrossRef
31.
go back to reference H. Zhang, Preparation of an acetylene black–dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode and the application in the determination of hydroxycamptothecin in blood serum. J. Membr. Sci. 251, 43–49 (2005)CrossRef H. Zhang, Preparation of an acetylene black–dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode and the application in the determination of hydroxycamptothecin in blood serum. J. Membr. Sci. 251, 43–49 (2005)CrossRef
32.
go back to reference Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang, W.H. Han, S.Z. Cao, L.C. Zhao, Phase composition and valence of pulsed laser deposited vanadium oxide thin films at different oxygen pressures. Surf. Coat. Technol. 201, 5344–5347 (2007)CrossRef Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang, W.H. Han, S.Z. Cao, L.C. Zhao, Phase composition and valence of pulsed laser deposited vanadium oxide thin films at different oxygen pressures. Surf. Coat. Technol. 201, 5344–5347 (2007)CrossRef
33.
go back to reference Z. Huang, H. Zeng, L. Xue, X. Zhou, Y. Zhao, Q. Lai, Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. J. Alloy. Compd. 509, 10080–10085 (2011)CrossRef Z. Huang, H. Zeng, L. Xue, X. Zhou, Y. Zhao, Q. Lai, Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. J. Alloy. Compd. 509, 10080–10085 (2011)CrossRef
34.
go back to reference T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong, Y. Li, A new benchmark capacitance for Supercapacitor anodes by mixed-valence sulfur-doped V6O13-x. Adv. Mater. 26, 5869–5875 (2014)CrossRef T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong, Y. Li, A new benchmark capacitance for Supercapacitor anodes by mixed-valence sulfur-doped V6O13-x. Adv. Mater. 26, 5869–5875 (2014)CrossRef
35.
go back to reference M. Liao, Q. Zhang, F. Tang, Z. Xu, X. Zhou, Y. Li, Y. Zhang, C. Yang, Q. Ru, L. Zhao, Nanosized CoO loaded on copper foam for high-performance, binder-free lithium-ion batteries. Nanomaterials 8, 183 (2018)CrossRef M. Liao, Q. Zhang, F. Tang, Z. Xu, X. Zhou, Y. Li, Y. Zhang, C. Yang, Q. Ru, L. Zhao, Nanosized CoO loaded on copper foam for high-performance, binder-free lithium-ion batteries. Nanomaterials 8, 183 (2018)CrossRef
Metadata
Title
Solvothermal preparation of Co-doped CoxV6−xO13 of cathode materials for lithium-ion batteries
Authors
Huanhuan Zhang
Zhengguang Zou
Shengyu Li
Yanjiao Zhang
Shuchao Zhang
Jie Liu
Publication date
02-01-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04997-x

Other articles of this Issue 2/2021

Journal of Materials Science: Materials in Electronics 2/2021 Go to the issue